精英家教网 > 高中数学 > 题目详情
10.若二次函数y=x2-2x+2与y=-x2+ax+b(a>0,b>0)在它们的一个交点处的切线互相垂直,则ab的最大值为(  )
A.$\frac{5}{2}$B.$\frac{5}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

分析 先对两个二次函数进行求导,然后设交点坐标,根据它们在一个交点处的切线相互垂直可得到a+b=$\frac{5}{2}$,再由基本不等式可求得最大值.

解答 解:∵y=x2-2x+2,∴y'=2x-2,
∵y=-x2+ax+b,∴y'=-2x+a,
设交点为(x0,y0),
∵它们在一个交点处切线互相垂直,
∴(2x0-2)(-2x0+a)=-1,即4x02-(2a+4)x0+2a-1=0,①
由交点分别代入二次函数式,整理得,
2x02-(2+a)x0+2-b=0,即4x02-(4+2a)x0+4-2b=0,②
由①②整理得 2a-1-4+2b=0,即a+b=$\frac{5}{2}$,(a>0,b>0)
∴ab≤$(\frac{a+b}{2})^{2}$=$\frac{25}{16}$,
∴ab的最大值为$\frac{25}{16}$.
故选:D.

点评 本题主要考查基本不等式的应用,利用导数的几何意义是解决本题的关键,一定要注意用基本不等式的条件“一正、二定、三相等”.综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(ax+b)lnx-bx+3在(1,f(1))处的切线方程为y=2.
(1)求a,b的值及函数f(x)的极值;
(2)证明:$\frac{ln2}{2}×\frac{ln3}{3}×\frac{ln4}{4}×…×\frac{lnn}{n}<\frac{1}{n}(n≥2,n∈N)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示的三角形数阵教“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}({n≥2})$,每个数是它下一行左右相邻两数的和,如图

则(1)第6行第2个数(从左到右)为$\frac{1}{30}$;
(2)第n行第3个数(从左到右)为$\frac{1}{n(n-1)(n-2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的长轴长为4,焦距为2.
(Ⅰ) 求C的方程;
(Ⅱ) 过点P(0,3)的直线m与轨迹C交于A,B两点.若A是PB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l过点P(2,3),
(1)若直线l在x轴、y轴上的截距之和等于0,求直线l的方程;
(2)若直线l与两条坐标轴在第一象限所围成的三角形的面积为16,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图(1),在三角形PCD中,AB为其中位线,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB将三角形PAB折起,使∠PAD=120°,构成四棱锥P-ABCD,如图(2),E和F分别是棱CD和PC的中点,
(1)求证:平面BEF⊥平面PCD;
(2)求平面PBC与平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-x-2,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=x3-mx-1在R上存在三个零点,则实数m的取值范围是($\frac{3}{\root{3}{4}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案