精英家教网 > 高中数学 > 题目详情
11.有一隧道内设为双向两车道公路(道路一侧只能行驶一辆车),其界面由一长方形和一条圆弧组成,如图所示,隧道总宽度为8米,总高度为6米,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB为6米(车道AB与隧道两侧墙壁之间各有1米宽的公共设施,禁止行车)
(1)按图中所示的直角坐标系xOy,求隧道上部圆弧所在的圆的标准方程;
(2)计算车辆通过隧道时的限制高度是多少?(精确到0.1米)
参考数据:$\sqrt{6}$=2.45,$\sqrt{7}$=2.65,$\sqrt{43}$=6.56.

分析 (1)由题意设出圆的标准方程,再带点求出未知量即可.
(2)将x的值代入,由此得到限制高度.

解答 解:(1)由题意,设圆的方程为x2+(y-b)2=r2
∵点(4,0),(0,3)在圆上,
∴$\left\{\begin{array}{l}{16+{b}^{2}={r}^{2}}\\{0+(3-b)^{2}={r}^{2}}\end{array}\right.$
∴$\left\{\begin{array}{l}{b=-\frac{7}{6}}\\{{r}^{2}=(\frac{25}{6})^{2}}\end{array}\right.$
故所求方程为:x2+(y+$\frac{7}{6}$)2=($\frac{25}{6}$)2
(2)由(1)把x=3带入方程得,9+(y+$\frac{7}{6}$)2=($\frac{25}{6}$)2
∴y=$\frac{\sqrt{43}×\sqrt{7}}{6}$≈1.73
因此,限制高度为:3+1.73-0.5=4.2(米)
答:限制高度应为4.2米.

点评 本题考察数形结合的思想,以及待定系数法解决问题,假设出标准方程再求未知量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图所示的三角形数阵教“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}({n≥2})$,每个数是它下一行左右相邻两数的和,如图

则(1)第6行第2个数(从左到右)为$\frac{1}{30}$;
(2)第n行第3个数(从左到右)为$\frac{1}{n(n-1)(n-2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-x-2,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=x3-mx-1在R上存在三个零点,则实数m的取值范围是($\frac{3}{\root{3}{4}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求曲线y=$\frac{1}{x}$与直线y=x,x=2所围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上一点(不包括棱的端点),且|PA|+|PC1|=$\sqrt{5}$,则满足条件的点P的个数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x3+3x2+2的单调递减区间为(  )
A.(-2,+∞)B.(-∞,2)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义域为R的函数y=g(x)满足以下条件:①?x∈R,g(3-x)=g(3+x)②g(x)=g(x+2)③当x∈[1,2]时,g(x)=-2x2+4x-2,若方程g(x)=loga(x+1)(a>0,且a≠1)在[0,+∞)上至少有5个不等的实根,则实数a的取值范围为(  )
A.0<a<$\frac{\sqrt{3}}{3}$B.0<a≤$\frac{\sqrt{5}}{5}$C.0<a<$\frac{\sqrt{5}}{5}$D.a≥$\frac{1}{2}$

查看答案和解析>>

同步练习册答案