17£®ÒÑÖª$\overrightarrow a$=£¨2£¬-$\sqrt{3}$£©£¬$\overrightarrow b$=£¨sin2£¨$\frac{¦Ð}{4}$+x£©£¬cos2x£©£®Áîf£¨x£©=$\overrightarrow a$•$\overrightarrow b$-1£¬x¡ÊR£¬º¯Êýg£¨x£©=f£¨x+¦Õ£©£¬¦Õ¡Ê£¨0£¬$\frac{¦Ð}{2}$£©µÄͼÏó¹ØÓÚ£¨-$\frac{¦Ð}{6}$£¬0£©¶Ô³Æ£®
£¨¢ñ£© Çóf£¨x£©µÄ½âÎöʽ£¬²¢Çó¦ÕµÄÖµ£»
£¨¢ò£©ÔÚ¡÷ABCÖÐsinC+cosC=1-$\sqrt{2}sin\frac{C}{2}$£¬Çóg£¨B£©µÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©½«º¯Êý½øÐл¯¼ò£¬½áºÏÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖʼ´¿ÉÇóº¯Êýf£¨x£©µÄ½âÎöʽ£¬½øÒ»²½Çó³öͼÏóµÄ¶Ô³ÆÖÐÐÄ£¬¼´¿ÉµÃµ½¦ÕµÄÖµ£»
£¨¢ò£©ÓÉÒÑÖªÌõ¼þ»¯¼òµÃµ½sinCµÄÖµ£¬Çó³öC=$\frac{5¦Ð}{6}$£¬ÓÖ$g£¨B£©=2sin£¨2B+\frac{¦Ð}{3}£©$£¬ÓÖ$0£¼B£¼\frac{¦Ð}{6}$£¬µÃµ½$\frac{¦Ð}{3}£¼2B+\frac{¦Ð}{3}£¼\frac{2¦Ð}{3}$£¬¼´¿ÉÇó³ög£¨B£©µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©¡ßf£¨x£©=$\overrightarrow a$•$\overrightarrow b$-1=$2si{n}^{2}£¨\frac{¦Ð}{4}+x£©-\sqrt{3}cos2x-1$=2$sin£¨2x-\frac{¦Ð}{3}£©$£¬
¡à$g£¨x£©=f£¨x+ϕ£©=2sin£¨2x+2ϕ-\frac{¦Ð}{3}£©$£®
¡àg£¨x£©µÄͼÏóµÄ¶Ô³ÆÖÐÐÄΪ$£¨-ϕ+\frac{k¦Ð}{2}+\frac{¦Ð}{6}£¬0£©£¬k¡ÊZ$£®
ÓÖÒÑÖªµã£¨$-\frac{¦Ð}{6}£¬0$£©Îªg£¨x£©µÄͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£¬¡à$ϕ=\frac{k¦Ð}{2}+\frac{¦Ð}{3}_{\;}^{\;}£¨k¡ÊZ£©$£®
¶ø$ϕ¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬¡à$ϕ=\frac{¦Ð}{3}$£»
£¨¢ò£©ÓÉ$sinC+cosC=1-\sqrt{2}sin\frac{C}{2}$µÃ$2sin\frac{C}{2}cos\frac{C}{2}+1-2{sin^2}\frac{C}{2}=1-\sqrt{2}sin\frac{C}{2}$£¬
¼´$sin\frac{C}{2}£¨2cos\frac{C}{2}-2sin\frac{C}{2}+\sqrt{2}£©=0$£¬
¡ß$sin\frac{C}{2}¡Ù0$£¬
¡à$sin\frac{C}{2}-cos\frac{C}{2}=\frac{{\sqrt{2}}}{2}$£®
Á½±ßƽ·½µÃ$sinC=\frac{1}{2}$£®
ÓÉ$sin\frac{C}{2}-cos\frac{C}{2}=\frac{{\sqrt{2}}}{2}$£¬
µÃ$sin\frac{C}{2}£¾cos\frac{C}{2}$£¬¡à$\frac{¦Ð}{4}£¼\frac{C}{2}£¼\frac{¦Ð}{2}$£®
¡à$\frac{¦Ð}{2}£¼C£¼¦Ð$£¬$C=\frac{5¦Ð}{6}$£®
ÓÖ$g£¨B£©=2sin£¨2B+\frac{¦Ð}{3}£©$£¬
ÓÖ¡ß$0£¼B£¼\frac{¦Ð}{6}$£¬¡à$\frac{¦Ð}{3}£¼2B+\frac{¦Ð}{3}£¼\frac{2¦Ð}{3}$£¬
¡à$g£¨B£©¡Ê£¨\sqrt{3}£¬2]$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Ó㬿¼²éÁËÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÀûÓÃÈý½Çº¯Êý¹«Ê½½«º¯Êý½øÐл¯¼òÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬²àÀâPD¡Íµ×ÃæABCD£¬PD=DC£¬EÊÇPCµÄÖе㣬¹ýEµã×÷EF¡ÍPB½»PBÓÚµãF£®ÇóÖ¤£º
£¨1£©PA¡ÎÆ½ÃæEDB£»
£¨2£©PB¡ÍÆ½ÃæEFD£®
£¨3£©ÇóÈýÀâ×¶E-BCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªf£¨x£©=ax5+bsinx+cx+2£¬Èôf£¨2£©=5£¬Ôòf£¨-2£©=£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®-5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªf£¨x£©=$\frac{x}{1+x}$£¬x¡Ý0£¬Èôf1£¨x£©=f£¨x£©£¬fn+1£¨x£©=f£¨fn£¨x£©£©£¬n¡ÊN+£¬Ôòf2017£¨x£©µÄ±í´ïʽΪf2017£¨x£©=$\frac{x}{1+2017x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Ô²C£ºx2+£¨y-1£©2=1ÓëyÖáµÄÉϽ»µãΪA£¬¶¯µãP´ÓAµã³ö·¢ÑØÔ²C°´ÄæÊ±Õë·½ÏòÔ˶¯£¬ÉèÐýתµÄ½Ç¶È¡ÏACP=x£¨0¡Üx¡Ü2¦Ð£©£¬ÏòÁ¿$\overrightarrow{OP}$ÔÚ$\overrightarrow a$=£¨0£¬1£©·½ÏòµÄÉäӰΪy£¨OÎª×ø±êÔ­µã£©£¬Ôòy¹ØÓÚxµÄº¯Êýy=f£¨x£©µÄͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÆæº¯Êýf£¨x£©£¨x¡ÊD£©£¬µ±x£¾0ʱ£¬f£¨x£©¡Üf£¨1£©=2£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙD=[-1£¬1]£»
¢Ú¶Ô?x¡ÊD£¬|f£¨x£©|¡Ü2£»
¢Û?x0¡ÊD£¬Ê¹µÃf£¨x0£©=0£»
¢Ü?x1¡ÊD£¬Ê¹µÃf£¨x1£©=1£®
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³²úÆ·°´ÐÐÒµÉú²ú±ê×¼·Ö³É8¸öµÈ¼¶£¬µÈ¼¶ÏµÊýXÒÀ´ÎΪ1£¬2£¬¡­£¬8£¬ÆäÖÐX¡Ý5Ϊ±ê×¼A£¬X¡Ý3Ϊ±ê×¼B£¬ÒÑÖª¼×³§Ö´Ðбê×¼AÉú²ú¸Ã²úÆ·£¬²úÆ·µÄÁãÊÛ¼ÛΪ6Ôª/¼þ£»ÒÒ³§Ö´Ðбê×¼BÉú²ú¸Ã²úÆ·£¬²úÆ·µÄÁãÊÛ¼ÛΪ4Ôª/¼þ£¬¼Ù¶¨¼×¡¢ÒÒÁ½³§µÄ²úÆ·¶¼·ûºÏÏàÓ¦µÄÖ´Ðбê×¼
£¨1£©ÒÑÖª¼×³§²úÆ·µÄµÈ¼¶ÏµÊýX1µÄ¸ÅÂÊ·Ö²¼ÁÐÈç±íËùʾ£º
X15678
P0.4ab0.1
ÇÒX1µÄÊý×ÖÆÚÍûEX1=6£¬Çóa£¬bµÄÖµ£»
£¨2£©Îª·ÖÎöÒÒ³§²úÆ·µÄµÈ¼¶ÏµÊýX2£¬´Ó¸Ã³§Éú²úµÄ²úÆ·ÖÐËæ»ú³éÈ¡30¼þ£¬ÏàÓ¦µÄµÈ¼¶ÏµÊý×é³ÉÒ»¸öÑù±¾£¬Êý¾ÝÈçÏ£º
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
ÓÃÕâ¸öÑù±¾µÄƵÂÊ·Ö²¼¹À¼Æ×ÜÌå·Ö²¼£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬ÇóµÈ¼¶ÏµÊýX2µÄÊýѧÆÚÍû£®
£¨3£©ÔÚ£¨1£©¡¢£¨2£©µÄÌõ¼þÏ£¬ÈôÒÔ¡°ÐԼ۱ȡ±ÎªÅжϱê×¼£¬ÔòÄĸö¹¤³§µÄ²úÆ·¸ü¾ß¿É¹ºÂòÐÔ£¿ËµÃ÷ÀíÓÉ£®
×¢£º¢Ù²úÆ·µÄ¡°ÐԼ۱ȡ±=²úÆ·µÄµÈ¼¶ÏµÊýµÄÊýѧÆÚÍû/²úÆ·µÄÁãÊÛ¼Û£»
¢Ú¡°ÐԼ۱ȡ±´óµÄ²úÆ·¸ü¾ß¿É¹ºÂòÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin¦È=2acos ¦È£¨a£¾0£©£¬¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßLµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¬t£¨Îª²ÎÊý£©£¬Ö±ÏßLÓëÇúÏßC·Ö±ð½»ÓÚM£¬NÁ½µã£®
£¨1£©Ð´³öÇúÏßCµÄÆ½ÃæÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßLµÄÆÕͨ·½³Ì£»
£¨2£©ÈôPM£¬MN£¬PN³ÉµÈ±ÈÊýÁУ¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®É躯Êýf£¨x£©=4x2+2x£¬Ôòf£¨sin$\frac{7¦Ð}{6}$£©µÈÓÚ£¨¡¡¡¡£©
A£®0B£®3-$\sqrt{3}$C£®2D£®3+$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸