精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=4x2+2x,则f(sin$\frac{7π}{6}$)等于(  )
A.0B.3-$\sqrt{3}$C.2D.3+$\sqrt{3}$

分析 先求出sin$\frac{7π}{6}$的值,再利用函数性质求解.

解答 解:∵函数f(x)=4x2+2x,
∴f(sin$\frac{7π}{6}$)=f(-sin$\frac{π}{6}$)=f(-$\frac{1}{2}$)=4×(-$\frac{1}{2}$)2+2×(-$\frac{1}{2}$)=0.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意三角函数性质及函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a$=(2,-$\sqrt{3}$),$\overrightarrow b$=(sin2($\frac{π}{4}$+x),cos2x).令f(x)=$\overrightarrow a$•$\overrightarrow b$-1,x∈R,函数g(x)=f(x+φ),φ∈(0,$\frac{π}{2}$)的图象关于(-$\frac{π}{6}$,0)对称.
(Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1-$\sqrt{2}sin\frac{C}{2}$,求g(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.三棱锥P-ABC是半径为3的球内接正三棱锥,则P-ABC体积的最大值为8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=log3x-1的零点数为a,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数$z=\frac{1}{1-2i}$,则$\overline z$为(  )
A.$-\frac{1}{5}+\frac{2}{5}i$B.$-\frac{1}{5}-\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}i$D.$\frac{1}{5}-\frac{2}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设n=$\int_0^{\frac{π}{2}}{\;}$6sinxdx,则二项式${(x-\frac{2}{x^2})^n}$展开式中,x-3项的系数为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由y=x2和y=2x围成的平面图形绕x轴旋转一周所形成的旋转体的体积为$\frac{64}{15}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数a≥2,试判断函数f(x)=lnx-$\frac{1}{{e}^{x}}$$+\frac{a}{e•x}$的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.设AA1=AC=CB=2,AB=2$\sqrt{2}$,
(1)证明:BC1∥平面A1CD;
(2)求异面直线BC1与A1D所成角的大小.
(3)求B点到平面A1DC的距离.

查看答案和解析>>

同步练习册答案