精英家教网 > 高中数学 > 题目详情
5.三棱锥P-ABC是半径为3的球内接正三棱锥,则P-ABC体积的最大值为8$\sqrt{3}$.

分析 设球心到棱锥底面的距离为x,则棱锥的高为x+3,利用勾股定理求出底面边长,代入体积公式,根据不等式的性质求出体积的最大值.

解答 解:设球心O到三棱锥底面ABC的距离为x,则0≤x<3,
设底面中心为O′,则O′A=$\sqrt{O{A}^{2}-OO{′}^{2}}$=$\sqrt{9-{x}^{2}}$,
∴底面边长AB=$\sqrt{3}$O′A=$\sqrt{27-3{x}^{2}}$,棱锥的高PO′=x+3,
∴VP-ABC=$\frac{1}{3}{S}_{△ABC}•PO′$=$\frac{1}{3}×\frac{\sqrt{3}}{4}(27-3{x}^{2})(x+3)$=$\frac{\sqrt{3}}{8}$(3+x)(6-2x)(x+3)≤$\frac{\sqrt{3}}{8}$($\frac{3+x+6-2x+x+3}{3}$)3=8$\sqrt{3}$.
当且仅当x+3=6-2x即x=1时取得等号.
故答案为8$\sqrt{3}$.

点评 本题考查了球与内接几何体的关系,空间想象能力,体积计算及不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x)=ax5+bsinx+cx+2,若f(2)=5,则f(-2)=(  )
A.-1B.0C.1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准
(1)已知甲厂产品的等级系数X1的概率分布列如表所示:
X15678
P0.4ab0.1
且X1的数字期望EX1=6,求a,b的值;
(2)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.
(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:①产品的“性价比”=产品的等级系数的数学期望/产品的零售价;
②“性价比”大的产品更具可购买性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsinθ=2acos θ(a>0),过点P(-2,-4)的直线L的参数方程为$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,t(为参数),直线L与曲线C分别交于M,N两点.
(1)写出曲线C的平面直角坐标方程和直线L的普通方程;
(2)若PM,MN,PN成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M(M⊆D),有(x-m)∈D且f(x-m)≤f(x),则称f(x)为M上的m度低调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的5度低调函数,那么实数a的取值范围为-$\frac{\sqrt{5}}{2}$≤a≤$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|x-a|-$\frac{4}{x}$+a-3(a∈R)有且仅有3个不同的零点x1,x2,x3(x1<x2<x3),且2x2=x1+x3,则a=-$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)={log_{0.5}}[{{x^2}-2({2a-1})x+8}]$,a∈R.
(1)若使函数f(x)在[a,+∞)上为减函数,求a的取值范围;
(2)若关于x的方程f(x)=-1+log0.5(x+3)在[1,3]上仅有一解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=4x2+2x,则f(sin$\frac{7π}{6}$)等于(  )
A.0B.3-$\sqrt{3}$C.2D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如表是一位母亲给儿子作的成长记录:
年龄/周岁3456789
身高/cm94.8104.2108.7117.8124.3130.8139.1
根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为$\stackrel{∧}{y}$=7.19x+73.93,给出下列结论:
①y与x具有正的线性相关关系;    
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是145.83cm;  
④儿子年龄增加1周岁,身高约增加7.19cm.
其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案