精英家教网 > 高中数学 > 题目详情
15.如表是一位母亲给儿子作的成长记录:
年龄/周岁3456789
身高/cm94.8104.2108.7117.8124.3130.8139.1
根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为$\stackrel{∧}{y}$=7.19x+73.93,给出下列结论:
①y与x具有正的线性相关关系;    
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是145.83cm;  
④儿子年龄增加1周岁,身高约增加7.19cm.
其中,正确结论的个数是(  )
A.1B.2C.3D.4

分析 根据回归方程的定义和性质分别进行判断即可.

解答 解:由线性回归方程为$\stackrel{∧}{y}$=7.19x+73.93可得直线的斜率k=7.19>0,则y与x具有正的线性相关关系,故①正确,
∵$\overline{x}$=$\frac{1}{7}$(3+4+5+6+7+8+9)=6,$\overline{y}$=$\frac{1}{7}$(94.8+104.2+108.7+117.8+124.3+130.8+139.1)=117.1,即样本中心为(6,117.1),故②错误;
当x=10时,$\stackrel{∧}{y}$=7.19×10+73.93=145.83cm,即儿子10岁时的身高大约是145.83cm,不一定一定是145.83cm,故③错误,
儿子年龄增加1周岁,身高约增加7.19cm,故④正确,
故正确的是①④,
故选:B

点评 本题主要考查命题的真假判断,涉及线性回归方程的性质,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.三棱锥P-ABC是半径为3的球内接正三棱锥,则P-ABC体积的最大值为8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由y=x2和y=2x围成的平面图形绕x轴旋转一周所形成的旋转体的体积为$\frac{64}{15}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数a≥2,试判断函数f(x)=lnx-$\frac{1}{{e}^{x}}$$+\frac{a}{e•x}$的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若a是从0,1,2,3,4五个数中任取的一个数,b是从0,1,2中任取的一个数,求a与b的和为偶数的概率.
(2)若a是从[0,4]任取的一个实数,b是从[0,2]中任取的一个实数,求“a≥b”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)对任意x∈R都有f(x)+f(1-x)=2.
(1)求f($\frac{1}{2}$)和f($\frac{1}{n}$)+f($\frac{n-1}{n}$)(n∈N*)的值;
(2)数列{an}满足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+,+f($\frac{n-1}{n}$)+f(1),(n∈N*)求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边a,b,c.若$a=2,c=2\sqrt{3},B=\frac{π}{6}$,则b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.设AA1=AC=CB=2,AB=2$\sqrt{2}$,
(1)证明:BC1∥平面A1CD;
(2)求异面直线BC1与A1D所成角的大小.
(3)求B点到平面A1DC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,向边长为1的正方形内随机的投点,所投的点落在由y=x2和y=x${\;}^{\frac{1}{2}}}$围成的封闭图形的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案