分析 (1)取A1B1的中点F,连接C1F,BF,FD,利用平行四边形的判定与性质定理可得C1F∥CD,BF∥A1D,再利用面面平行的判定与性质定理即可得出.
(2)由AC2+BC2=AB2,利用勾股定理的逆定理可得∠ACB=90°.由直三棱柱ABC-A1B1C1中,可得CC1⊥AC,CC1⊥BC.以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量的夹角公式即可得出.
(3)设平面CA1D的法向量为$\overrightarrow{n}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=0}\end{array}\right.$,可得$\overrightarrow{n}$.利用d=$\frac{|\overrightarrow{n}•\overrightarrow{CB}|}{|\overrightarrow{n}|}$即可得出B点到平面A1DC的距离.
解答 证明:(1)取A1B1的中点F,连接C1F,BF,FD,则C1F∥CD,BF∥A1D,![]()
∴平面BC1F∥平面A1CD,BC1?平面BC1F.
∴BC1∥平面A1CD.
解:(2)∵AC=CB=2,AB=2$\sqrt{2}$,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥CB.
由直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,∴CC1⊥AC,CC1⊥BC.
以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,则
C(0,0,0),B(0,2,0),C1(0,0,2),A1(2,0,2),D(1,1,0),
$\overrightarrow{B{C}_{1}}$=(0,-2,2),$\overrightarrow{{A}_{1}D}$=(-1,1,-2),
∴$cos<\overrightarrow{B{C}_{1}},\overrightarrow{{A}_{1}D}>$=$\frac{\overrightarrow{B{C}_{1}}•\overrightarrow{{A}_{1}D}}{|\overrightarrow{B{C}_{1}}||\overrightarrow{{A}_{1}D}|}$=$\frac{-6}{\sqrt{8}×\sqrt{6}}$=-$\frac{\sqrt{3}}{2}$.
∴异面直线BC1,A1D所成的角为$\frac{π}{6}$.
(3)$\overrightarrow{CD}$=(1,1,0),设平面CA1D的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{x+y=0}\\{-x+y-2z=0}\end{array}\right.$,取$\overrightarrow{n}$=(1,-1,-1).
$\overrightarrow{CB}$=(0,2,0),∴B点到平面A1DC的距离=$\frac{|\overrightarrow{n}•\overrightarrow{CB}|}{|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
点评 本题考查了空间位置关系、空间角隅空间距离、法向量的应用、数量积运算性质、向量夹角公式,考查了数形结合方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 3-$\sqrt{3}$ | C. | 2 | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{e}$ | B. | $\frac{2}{e}$ | C. | $\frac{2\sqrt{e}}{e}$ | D. | $\frac{\sqrt{e}}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com