分析 由平行四边形的性质可得:BC∥AD,AB=DC.可得△EBF∽△EAD,再利用相似三角形的性质、比例的性质即可得出.
解答 解:由平行四边形的性质可得:BC∥AD,AB=DC.
∴△EBF∽△EAD,
∴$\frac{BF}{AD}$=$\frac{EB}{EA}$,
又$\frac{DC}{BE}$=$\frac{3}{2}$,∴$\frac{BF}{AD}$=$\frac{2}{5}$,
∴$\frac{AD}{BF}$=$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.
点评 本题考查了平行四边形的性质、相似三角形的性质、比例的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{5}+\frac{2}{5}i$ | B. | $-\frac{1}{5}-\frac{2}{5}i$ | C. | $\frac{1}{5}+\frac{2}{5}i$ | D. | $\frac{1}{5}-\frac{2}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3×4=12种 | B. | 4×3×2=24种 | C. | 43=64种 | D. | 34=81种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com