精英家教网 > 高中数学 > 题目详情
11.如图,AB为圆O的直径,过点B作圆O的切线,任取圆O上异于A,B的一点E,连接AE并延长交BC于点C,过点E作圆O的切线,交边BC于一点D.
(1)求$\frac{BD}{CD}$的值;
(2)连接OD交圆O于一点M,求证:2DE2=DM•AC+DM•AB.

分析 (1)连接BE、OE,由直径所对的圆周角为直角,得到BE⊥EC,证明DC=DE=DB,即可得出结论;
(2)延长DO交圆O于点H,由(1)的结论证出DE为圆O的切线,从而得出DE2=DM•DH,再将DH分解为DO+OH,并利用OH=$\frac{1}{2}$AB和DO=$\frac{1}{2}$AC,化简即可得到等式2DE2=DM•AC+DM•AB成立.

解答 (1)解:连接OE,BE,如图,因为AB为圆O的直径,所以∠AEB=90°,
又ED为圆O的切线,所以∠OED=90°,因为OE=OB,∴∠1=∠2,
又∠1=∠3=90°,∠2+∠EBD=90°,∠3=∠EBD,∴DB=DE,(2分)
同时∠3=∠BAC,∠DEC+∠3=90°,∠A+∠DCE=90°,
∴∠DCE=∠DEC,
∴DC=DE,
∴DC=DE=DB,∴$\frac{BD}{CD}$=1.(5分)
(2)证明:延长DO交圆O于点H.
∵DE⊥OE,OE是半径,∴DE为圆O的切线.
由圆的切割线定理可得DE2=DM•DH
=DM•(DO+OH)=DM•DO+DM•OH,(7分)
所以DE2=DM•$\frac{1}{2}$AC+DM•$\frac{1}{2}$AB,
所以2DE2=DM•AC+DM•AB.(10分)

点评 本题着重考查了圆的切线的性质定理与判定、直径所对的圆周角、全等三角形的判定与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{2}$,右焦点到直线$\frac{x}{a}+\frac{y}{b}$=1的距离$d=\frac{{\sqrt{21}}}{7}$,O为坐标原点
(1)求椭圆E的方程
(2)过点O作两条互相垂直的射线,与椭圆E分别交于A、B两点,求点O到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则log2a10=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,E是平行四边形ABCD的边AB延长线上的一点,且$\frac{DC}{BE}$=$\frac{3}{2}$,则$\frac{AD}{BF}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-1,函数g(x)=2tlnx,t≤1.
(1)如果函数f(x)与g(x)在x=1处的切线均为l,求切线l的方程及t的值;
(2)讨论函数h(x)=f(x)-g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow a$与$\overrightarrow b$不共线,$\overrightarrow a\overrightarrow b≠0$,且$\overrightarrow c=\overrightarrow a-(\frac{\overrightarrow a\overrightarrow a}{\overrightarrow a\overrightarrow b})\overrightarrow b$,则向量$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在正四面体A-BCD中,有下列四个命题,其中真命题的个数为(  )
①每组对棱异面垂直;
②连接每组对棱的中点,则这三线交于一点;
③在棱CD上至少存在一个点E,使∠AEB=$\frac{π}{2}$;
④正四面体的外接球的半径是其棱长的$\frac{{\sqrt{6}}}{4}$倍.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$都是单位向量,且向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,若$\overrightarrow{c}$=2x$\overrightarrow{a}$+y$\overrightarrow{b}$,其中x,y为正实数,则xy的最大值为(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}满足:a2+a3=3,a3+a4=6,那么$\sqrt{{a_4}•{a_{12}}}$=(  )
A.128B.81C.64D.49

查看答案和解析>>

同步练习册答案