精英家教网 > 高中数学 > 题目详情
9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,线段AB是圆x2+y2-2x-y+m=0的一条直径也是椭圆C的一条弦,已知直线AB斜率为-1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M,P是椭圆C上的两点,点M关于x轴的对称点为N,当直线MP,NP分别交x轴于点M1,N1,求证:|OM1|•|ON1|为定值.

分析 (Ⅰ)由椭圆的短轴长为2,得到b=2,求出圆心坐标为(1,$\frac{1}{2}$),利用点差法得a2=2,由此能求出椭圆C的方程.
(Ⅱ)设M(x3,y3),P(x4,y4),直线MP的方程为x=ny+m,代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,得(n2+2)y2+2mny+m2-2=0,求出直线NP的方程,由此能证明|OM1|•|ON1|为定值.

解答 解:(Ⅰ)∵椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,∴2b=2,b=1.
∵线段AB是圆x2+y2-2x-y+m=0的一条直径也是椭圆C的一条弦,直线AB斜率为-1,
∴圆心坐标为(1,$\frac{1}{2}$),
设A(x1,y1),B(x2,y2),则$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{{a}^{2}}+{{y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{{a}^{2}}+{{y}_{2}}^{2}=1}\end{array}\right.$,
两式相减,得:$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}•\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{{a}^{2}}$,
∴$\frac{2•\frac{1}{2}}{2•1}•(-1)=-\frac{1}{{a}^{2}}$,解得a2=2,
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)证明:设M(x3,y3),P(x4,y4),直线MP的方程为x=ny+m,
代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,得(n2+2)y2+2mny+m2-2=0,
∴${y}_{3}+{y}_{4}=-\frac{2mn}{{n}^{2}+2}$,${y}_{3}{y}_{4}=\frac{{m}^{2}-2}{{n}^{2}+2}$,
直线NP的方程为$y+{y}_{3}=\frac{{y}_{4}+{y}_{3}}{{x}_{4}-{x}_{3}}$(x-x3),
令y=0,得${y}_{{N}_{1}}=\frac{{y}_{3}{y}_{4}+{x}_{3}{x}_{4}}{{y}_{3}+{y}_{4}}$=$\frac{2n{y}_{3}{y}_{4}+m({y}_{3}+{y}_{4})}{{y}_{3}+{y}_{4}}$=$\frac{2}{m}$,
∵M1(m,0),∴|OM1|•|ON1|=2为定值.

点评 本题考查椭圆方程的求法,考查两线段长的乘积为定值的证明,是中档题,解题时要认真审题,注意椭圆性质、点差法、圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,E是平行四边形ABCD的边AB延长线上的一点,且$\frac{DC}{BE}$=$\frac{3}{2}$,则$\frac{AD}{BF}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$都是单位向量,且向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,若$\overrightarrow{c}$=2x$\overrightarrow{a}$+y$\overrightarrow{b}$,其中x,y为正实数,则xy的最大值为(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过原点的动直线l与圆C1:x2+y2-6x+5=0.
(1)求直线l与圆相交时,它的斜率K的取值范围;
(2)当l与圆相交于不同的两点A,B时,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.曲线y=x3-x2+4在点(1,4)处的切线的倾斜角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆F的方程为x2+y2-2x=0,与x轴正半轴交于点A,椭圆C的中心在原点,焦点在圆心F,顶点为A.
(1)求椭圆的方程;
(2)如图D,C是椭圆上关于y轴对称的两点,在x轴上存在点B,使得四边形ABCD为菱形,求B点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}满足:a2+a3=3,a3+a4=6,那么$\sqrt{{a_4}•{a_{12}}}$=(  )
A.128B.81C.64D.49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}{b}$=$\frac{sinC}{c}$,b2+c2-a2=$\frac{6}{5}$bc,则tanB=(  )
A.4B.$\frac{1}{4}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某学生家长为缴纳该学生上大学时的教育费,于2003年8月20号从银行贷款a元,为还清这笔贷款,该家长从2004年起每年的8月20号便去银行偿还确定的金额,计划恰好在贷款的m年后还清,若银行按年利息为p的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是(  )
A.$\frac{a}{m}$B.$\frac{{ap{{(1+p)}^{m+1}}}}{{{{(1+p)}^{m+1}}-1}}$
C.$\frac{{ap{{(1+p)}^{m+1}}}}{{{p^m}-1}}$D.$\frac{{ap{{(1+p)}^m}}}{{{{(1+p)}^m}-1}}$

查看答案和解析>>

同步练习册答案