精英家教网 > 高中数学 > 题目详情
14.已知圆F的方程为x2+y2-2x=0,与x轴正半轴交于点A,椭圆C的中心在原点,焦点在圆心F,顶点为A.
(1)求椭圆的方程;
(2)如图D,C是椭圆上关于y轴对称的两点,在x轴上存在点B,使得四边形ABCD为菱形,求B点坐标.

分析 (1)圆的方程出A(2,0),圆心F(1,0),设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0),则a=2,c=1,由此能求出椭圆方程.
(2)设D(m,n),则C(-m,n),B(2-2m,0),m>0,n>0,由题意得$\left\{\begin{array}{l}{\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1}\\{\sqrt{(2-m)^{2}+{n}^{2}}=2m}\end{array}\right.$,由此能求出点B坐标.

解答 解:(1)∵圆F的方程为x2+y2-2x=0,与x轴正半轴交于点A,
∴令y=0,得A(2,0),圆心F(1,0),
∵椭圆C的中心在原点,焦点在圆心F(1,0),顶点为A(2,0),
设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0),则a=2,c=1,∴b2=4-1=3,
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)设D(m,n),则C(-m,n),B(2-2m,0),m>0,n>0,
由题意得$\left\{\begin{array}{l}{\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1}\\{\sqrt{(2-m)^{2}+{n}^{2}}=2m}\end{array}\right.$,
由m>0,解得m=$\frac{14}{15}$.2-2m=2-$\frac{28}{15}$=$\frac{2}{15}$,
∴B($\frac{2}{15}$,0).

点评 本题目考查椭圆方程的求法,考查满足条件的点的坐标的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.设AA1=AC=CB=2,AB=2$\sqrt{2}$,
(1)证明:BC1∥平面A1CD;
(2)求异面直线BC1与A1D所成角的大小.
(3)求B点到平面A1DC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,向边长为1的正方形内随机的投点,所投的点落在由y=x2和y=x${\;}^{\frac{1}{2}}}$围成的封闭图形的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=log2(x+1)+m+1,则f(-15)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,线段AB是圆x2+y2-2x-y+m=0的一条直径也是椭圆C的一条弦,已知直线AB斜率为-1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M,P是椭圆C上的两点,点M关于x轴的对称点为N,当直线MP,NP分别交x轴于点M1,N1,求证:|OM1|•|ON1|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:an≠0,a1=1,an-an+1=2anan+1(n∈N*).
(1)求a2,a3
(2)求证:$\{\frac{1}{a_n}\}$是等差数列,并求出an
(3)设bn=anan+1,求数列{bn}的前n项和Sn<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:
①若m∥l,且m⊥α,则l⊥α
②若m∥l,且m∥α,则l∥α
③若α⊥β,α∩β=l,m⊥l,则m⊥β
④α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.等差数列{an}的前n项和为Sn,满足a3=7,且a5+a7=26,
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{{a_n}^2-4}}$,求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x∈R|-1<x<1},B={x∈R|0≤x≤3},则A∪B=(  )
A.{x|0≤x<1}B.{x|1<x≤3}C.{x|-1<x≤3}D.{x|x<-1,或x≥0}

查看答案和解析>>

同步练习册答案