精英家教网 > 高中数学 > 题目详情
3.等差数列{an}的前n项和为Sn,满足a3=7,且a5+a7=26,
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{{a_n}^2-4}}$,求数列bn的前n项和Tn

分析 (1)利用等差数列的性质求出首项和公差,再代入通项公式和求和公式即可;
(2)bn=$\frac{1}{{{a_n}^2-4}}$═$\frac{1}{({a}_{n}+2)({a}_{n}-2)}$,使用裂项法数列求和.

解答 解:(I)∵{an}为等差数列,∴2a6=a5+a7=26,即a6=13,
∴3d=a6-a3=6,即d=2,
∴a1=a3-2d=3,
∴an=3+2(n-1)=2n+1,
Sn=na1+$\frac{n(n-1)}{2}d$=n2+2n.
(II)bn=$\frac{1}{({a}_{n}+2)({a}_{n}-2)}$=$\frac{1}{(2n+3)(2n-1)}$=$\frac{1}{4}$($\frac{1}{2n-1}-\frac{1}{2n+3}$).
∴Tn=$\frac{1}{4}$(1-$\frac{1}{5}$)+$\frac{1}{4}$($\frac{1}{3}-\frac{1}{7}$)+$\frac{1}{4}$($\frac{1}{5}-\frac{1}{9}$)+…+$\frac{1}{4}$($\frac{1}{2n-3}$-$\frac{1}{2n+1}$)+$\frac{1}{4}$($\frac{1}{2n-1}-\frac{1}{2n+3}$)
=$\frac{1}{4}$(1-$\frac{1}{5}$+$\frac{1}{3}-\frac{1}{7}$+$\frac{1}{5}-\frac{1}{9}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n+1}$+$\frac{1}{2n-1}-\frac{1}{2n+3}$)
=$\frac{1}{4}$(1+$\frac{1}{3}$-$\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
=$\frac{1}{3}$-$\frac{1}{4(2n+1)}$-$\frac{1}{4(2n+3)}$.

点评 本题考查了等差数列的性质,裂项法数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式为an=$\frac{1}{2n-1}$,数列{bn}满足2an+bn=1,若对于任意n∈N*恒成立,不等式$\sqrt{{b}_{2}{b}_{3}…{b}_{n+1}}$≥$\frac{k}{(1+{a}_{1})(1+{a}_{2})…(1+{a}_{n})}$恒成立,则k的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆F的方程为x2+y2-2x=0,与x轴正半轴交于点A,椭圆C的中心在原点,焦点在圆心F,顶点为A.
(1)求椭圆的方程;
(2)如图D,C是椭圆上关于y轴对称的两点,在x轴上存在点B,使得四边形ABCD为菱形,求B点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.ABCD为长方形,AB=2,BC=1,在长方形ABCD内随机取一点,取到的点到点A 的距离大于1的概率为(  )
A.$\frac{π}{4}$B.1-$\frac{π}{4}$C.$\frac{π}{8}$D.1-$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}{b}$=$\frac{sinC}{c}$,b2+c2-a2=$\frac{6}{5}$bc,则tanB=(  )
A.4B.$\frac{1}{4}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四边形ABDC中,CD=$\sqrt{3}$,∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC中,a=$\sqrt{13}$,∠A=60°,S=3$\sqrt{3}$,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若角960°的终边上有一点(-4,a),则a的值是-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆上一点到右焦点的最大距离与最小距离之差为$4\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点A(4,-2),过原点且斜率为k(k>0)的直线l与椭圆交于两点P(x1,y1)、Q(x2,y2),求△APQ面积的最大值.

查看答案和解析>>

同步练习册答案