精英家教网 > 高中数学 > 题目详情
8.如图,在四边形ABDC中,CD=$\sqrt{3}$,∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求AB的长.

分析 先计算AC,AD,由正弦定理可得BC,再由余弦定理可得AB.

解答 解:∵∠ADC=30°,且∠ACB=75°,∠BCD=45°,
∴∠CAD=30°      
∴AC=CD=$\sqrt{3}$,
∴AD=$\sqrt{3+3-2×\sqrt{3}×\sqrt{3}×(-\frac{1}{2})}$=3.
又∵∠CBD=60°,
∴由正弦定理可得BC=$\frac{\sqrt{3}sin75°}{sin60°}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$
∴由余弦定理可得AB=$\sqrt{3+(\frac{\sqrt{6}+\sqrt{2}}{2})^{2}-2×\sqrt{3}×\frac{\sqrt{6}+\sqrt{2}}{2}×\frac{\sqrt{6}-\sqrt{2}}{4}}$=$\sqrt{5}$.

点评 本题考查正弦定理、余弦定理的运用,考查学生的计算能力,正确运用正弦定理、余弦定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知△ABC三个内角A、B、C的对边为a、b、c,acosA-bcosB=0,a≠b.
(1)求角C; 
(2)若y=$\frac{sinA+sinB}{sinA•sinB}$,试确定实数y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:an≠0,a1=1,an-an+1=2anan+1(n∈N*).
(1)求a2,a3
(2)求证:$\{\frac{1}{a_n}\}$是等差数列,并求出an
(3)设bn=anan+1,求数列{bn}的前n项和Sn<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$a={{(\frac{3}{4})}^{x}}$,b=x2,$c={{log}_{\frac{3}{4}}}x$,则当 x>1时,a,b,c的大小关系是(  )?
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.等差数列{an}的前n项和为Sn,满足a3=7,且a5+a7=26,
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{{a_n}^2-4}}$,求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个三角形的两边长是方程2x2-$\sqrt{k}$x+2=0的两根,第三边长为2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若2sin77°-sin17°=λsin73°,则λ=(  )
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P(x,y)是圆x2+(y-3)2=a2(a>0)上的动点,定点A(2,0),B(-2,0),△PAB的面积最大值为8,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点A、B的坐标分别为(2,0)、(-2,0),直线AT、BT交于点T,且它们的斜率之积为常数-λ(λ>0,λ≠1),点T的轨迹以及A、B两点构成曲线C.
(1)求曲线C的方程,并求其焦点坐标;
(2)若0<λ<1,且曲线C上的点到其焦点的最近距离为1.设直线l:y=k(x-1)交曲线C于E、F两点,交x轴于Q点.直线AE、AF分别交直线x=3于点N、M.记线段MN的中点为P,直线PQ的斜率为k′.求证:k•k′为定值.

查看答案和解析>>

同步练习册答案