精英家教网 > 高中数学 > 题目详情
16.将十进制数258化成四进制数是(10002)4

分析 用十进制的数(即258),除以4,得到商和余数;再用得到的商除以4,…直到商为0止.把余数从下往上排序即可.

解答 解:258÷4=64…2,
64÷4=16…0,
16÷4=4…0,
4÷4=1…0,
1÷4=0…1,
把余数从下往上排序:10002.
即:(258)10=(10002)4
故答案为:(10002)4

点评 本题考查排序问题与算法的多样性,解题的关键是掌握进位制换算的方法--除K取余法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零点之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点P(0,1).
(Ⅰ)求椭圆C的方程; 
(Ⅱ)过点(1,-1)的直线l与椭圆C交于不同的两点M、N(均异于点P).问直线PM与PN的斜率之和是否是定值,若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos263°cos203°+sin83°sin23°的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知2是函数f(x)=$\left\{\begin{array}{l}{{log}_{2}(x+m),x≥2}\\{{2}^{x},x<2}\end{array}\right.$ 的一个零点,则f[f(4)]的值是(  )
A.3B.2C.1D.log23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设计一个程序框图求$S=\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+…+\frac{1}{2015×2017}$的值,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}中,a7+a9=10,则S15的值是(  )
A.60B.75C.80D.70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)在第一象限的一个动点,过点P向两条渐近线作垂线,垂足分别为A、B,若A、B始终在第一或第二象限内,则该双曲线的离心率e的取值范围为($\sqrt{2}$,+∞).

查看答案和解析>>

同步练习册答案