精英家教网 > 高中数学 > 题目详情
10.已知an=$\frac{n+10}{2n+1}$,Tn是数列{an}的前n项积,当Tn取到最大值时,n的值为(  )
A.9B.8C.8或9D.9或10

分析 通过令an=$\frac{n+10}{2n+1}$=1得n=9,进而可得结论.

解答 解:易知数列{an}是递减数列,
令an=$\frac{n+10}{2n+1}$=1,得:n=9,
∴当n<9时an>1,当n>9时an<1,
∴T8=T9为数列{an}的前n项积的最大值,
∴n=8或9,
故选:C.

点评 本题考查数列的简单性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.当x∈(1,2]时,不等式x2+mx+4>0恒成立,则m的取值范围是m>-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数f(x)在定义域D内的某个区间I上是增函数,且F(x)=$\frac{f(x)}{x}$在I上也是增函数,则称y=f(x)是I上的“完美增函数”.已知f(x)=ex+x,g(x)=ex+x-lnx+1.
(1)判断函数f(x)是否为区间(0,+∞)上的“完美增函数”;
(2)若函数g(x)是区间$[{\frac{m}{2},+∞})$上的“完美增函数”,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“φ=$\frac{π}{2}$,”是“曲线y=cos(2x+φ)”过原点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若命题p:x2+2x+a=0有实根,命题q:函数f(x)=(a2-a)x是增函数,若p∨q为真,p∧q为假,则a的取值范围是(  )
A.a>0B.a≥0C.a>1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\frac{a}{2+i}$=2-i(i为虚数单位),则实数a的值为(  )
A.5B.-5C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(-12,7),若$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$,m,n∈R,则m+n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的公比为q,且|q|>1,若{an}的连续四项构成集合{-24,-54,36,81},则q=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知代数式$\frac{1-4x}{2-3x}$的值为非负数,求x的范围.

查看答案和解析>>

同步练习册答案