精英家教网 > 高中数学 > 题目详情
已知,抛物线的焦点,线段与抛物线的交点为,过作抛物线准线的垂线,垂足为,若,则_______.
 

试题分析:由题得,点,根据抛物线的定义(抛物线上的任意一点到准线的距离与到焦点的距离之比为1,即相等)得,,又因为为直角三角形且为斜边(直角三角形斜边上的中线等于斜边的一半),所以,即点M为线段PF的中点,坐标为,又因为点M在抛物线上,所以.故填.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定点与分别在轴、轴上的动点满足:,动点满足
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点为坐标原点);
(i)试判断直线与以为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于AB两点,点C在抛物线的准线上,且BCx轴,证明:直线AC经过原点O.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为

(1)求直线及抛物线的方程;
(2)过点的任一直线(不经过点)与抛物线交于两点,直线与直线相交于点,记直线的斜率分别为.问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(xy1),B(x2,y2).

(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不过原点的直线交于两点,若使得以为直径的圆过原点,则直线必过点(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为(  )
A.(-2,-9)B.(0,-5)
C.(2,-9) D.(1,-6)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y2=-8x的准线方程是________.

查看答案和解析>>

同步练习册答案