精英家教网 > 高中数学 > 题目详情
若关于x的方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m的取值范围是(  )
分析:根据一元二次方程根的个数与判别式之间的关系进行求解即可.
解答:解:∵关于x的方程x2+(2m+1)x+m2=0有两个不相等的实数根,
∴对应的判别式△>0,
即△=(2m+1)2-4m2>0,
∴4m+1>0,
解得m>-
1
4

故选:D.
点评:本题主要考查一元二次方程根的个数与判别式之间的关系,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中三个内角为A、B、C,若关于x的方程x2-xcosAcosB-cos2
C
2
=0有一根为1,则△ABC一定是(  )
A、直角三角形
B、等腰三角形
C、锐角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+ax-1=0在(-1,2)内恰好有一个解,则a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、若关于x的方程x2+(2-m2)x+2m=0的两根一个比1大一个比1小,则m的范围是
m>3或m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+2(a-1)x+2a+6=0有一正一负两实数根,则实数a的取值范围
a<-3
a<-3

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2-4|x|+5=m有四个不同的实数解,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案