精英家教网 > 高中数学 > 题目详情
,分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求的取值范围;
(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.
(1);(2); (3)满足条件的实数的值为.

试题分析:(1)设,的坐标分别为,其中
由题意得的方程为:
根据到直线的距离为,可求得
联立即可得到.
(2)设,,由可得,代人椭圆的方程得,即可解得.
(3)由, 设,根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,代入椭圆的方程,整理得:
由韦达定理得,则,
得到线段的中点坐标为.注意讨论的情况,确定的表达式,求得实数的值.
方法比较明确,运算繁琐些;分类讨论是易错之处.
试题解析:(1)设,的坐标分别为,其中
由题意得的方程为:
到直线的距离为,所以有,解得     2分
所以有 ①
由题意知: ,即 ②
联立①②解得:
所求椭圆的方程为     4分
(2)由(1)知椭圆的方程为 
,,由于,所以有
      7分
是椭圆上的一点,则
所以
解得:                  9分
(3)由, 设
根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为
把它代入椭圆的方程,消去,整理得:
由韦达定理得,则,
所以线段的中点坐标为
(1)当时, 则有,线段垂直平分线为
于是
,解得:      11分
(2) 当时, 则线段垂直平分线的方程为
因为点是线段垂直平分线的一点
,得:
于是
,解得:
代入,解得:
综上, 满足条件的实数的值为.       14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的方程;
(2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面五边形关于直线对称(如图(1)),,将此图形沿折叠成直二面角,连接得到几何体(如图(2))

(1)证明:平面
(2)求平面与平面的所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左右焦点,点为其上一点,且有
.
(1)求椭圆的标准方程;
(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M=1(ab>0)的短半轴长b=1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4.
(1)求椭圆M的方程;
(2)设直线lxmyt与椭圆M交于AB两点,若以AB为直径的圆经过椭圆的右顶点C,求t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

同步练习册答案