精英家教网 > 高中数学 > 题目详情
如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的方程;
(2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.
(1)圆的方程为,曲线的方程为);(2)当时,四边形的面积最大值为;(3)证明见解析,其焦点坐标为.

试题分析:(1)圆的半径等于圆心到切线的距离,曲线的方程可通过已知变形得到,条件是,把已知式平方可得出的方程;(2)从方程可看出,即,因此,我们把方程与曲线方程联立方程组可解得两点坐标,从而得到,把中的,用代可得出,从而求出,变形为,易知,故当时,取得最大值,为了求最大值,也可作变形,应用基本不等式基本不等式知识得出结论;(3)要证曲线为椭圆,首先找它的对称轴,从方程中可看出直线是其对称轴,接着求出曲线与对称轴的交点即椭圆的顶点,这样可求得长轴长和短轴长,根据公式,求出半焦距,这样可求出焦点,下面我们只要按照椭圆的定义证明曲线的点到两定点的距离之和为定值,也可求出到两定点的距离之和为定值的点的轨迹方程是曲线的方程,这样就完成了证明. 
试题解析:(1)由题意圆的半径
故圆的方程为.                             2分
得,
,得
)为曲线的方程.(未写范围不扣分) 4分
(2)由
所以,同理.        6分
由题意知 ,所以四边形的面积.

,∴ .           8分
当且仅当时等号成立,此时.
∴ 当时,四边形的面积最大值为.                        10分
(3)曲线的方程为),它关于直线和原点对称,下面证明:
设曲线上任一点的坐标为,则,点关于直线的对称点为,显然,所以点在曲线上,故曲线关于直线对称,
同理曲线关于直线和原点对称.
可以求得和直线的交点坐标为
和直线的交点坐标为
.
上取点
下面证明曲线为椭圆:
ⅰ)设为曲线上任一点,则





(因为
.
即曲线上任一点到两定点的距离之和为定值.
ⅱ)若点到两定点的距离之和为定值,可以求得点的轨迹方程为(过程略).            
故曲线是椭圆,其焦点坐标为.              18分
第(3)问说明:
1. ⅰ)、ⅱ)两种情形只需证明一种即可,得5分,
2. 直接写出焦点的坐标给3分,未写出理由不扣分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知平面内一动点到两个定点的距离之和为,线段的长为.

(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于两点,且点在线段的上方,
线段的垂直平分线为.
①求的面积的最大值;
②轨迹上是否存在除外的两点关于直线对称,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求的取值范围;
(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得··?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.

(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点是双曲线的一个焦点,则正数等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案