精英家教网 > 高中数学 > 题目详情
如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
(1);(2);(3)存在

试题分析:(1)椭圆C:的离心率为
由椭圆的左顶点为,所以可得椭圆的标准方程
(2)点M与点N关于轴对称,设
 ,再根据的取值范围求出的范围.
(3)假设存在点使取最大值,因为
=
利用点分别是直线 与轴的交点,把表示成的函数,进而求出其取最大值的值,确定点的坐标.
试题解析:
解:(1)由题意知解之得; ,由得b=1,

故椭圆C方程为;.3分
(2)点M与点N关于轴对称,设, 不妨 设, 由于点M在椭圆C上,,
由已知 
,..6分由于故当时,取得最小值为,
,故又点M在圆T上,代入圆的方程得,故圆T的方程为:;..8分
(3)假设存在满足条件的点P,设,则直线MP的方程为:
,得,同理,
;..10分
又点M与点P在椭圆上,故,
,
为定值,.12分
===,
P为椭圆上的一点,要使最大,只要最大,而的最大值为1,故满足条件的P点存在其坐标为...14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的方程;
(2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右焦点.
(1)若是第一象限内该椭圆上的一点,,求点的坐标;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其
为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点与抛物线有且只有一个交点的直线有(  )
A.4条    B.3条   C.2条  D.1条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,过F作直线交抛物线于A、B两点,设(  )
A.4       B.8       C.       D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于曲线=1,给出下面四个命题:
(1)曲线不可能表示椭圆;
(2)若曲线表示焦点在x轴上的椭圆,则1<
(3)若曲线表示双曲线,则<1或>4;
(4)当1<<4时曲线表示椭圆,其中正确的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.

查看答案和解析>>

同步练习册答案