精英家教网 > 高中数学 > 题目详情
过点与抛物线有且只有一个交点的直线有(  )
A.4条    B.3条   C.2条  D.1条
B

试题分析:(1)当过点P(0,1)的直线存在斜率时,设其方程为:y=kx+1,由,消y得k2x2+(2k-1)x+1=0,①若k=0,方程为-x+1=0,解得x=1,此时直线与抛物线只有一个交点(1,1);②若k≠0,令△=(2k-1)2-4k2=0,解得k=,此时直线与抛物线相切,只有一个交点;(2)当过点P(0,1)的直线不存在斜率时,该直线方程为x=0,与抛物线相切只有一个交点;综上,过点P(0,1)与抛物线y2=x有且只有一个交点的直线有3条.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设点A(x0,y0)为抛物线y2=
x
2
上位于第一象限内的一动点,点B(0,y1)在y轴正半轴上,且|OA|=|OB|,直线AB交x轴于点P(x2,0).
(Ⅰ)试用x0表示y1
(Ⅱ)试用x0表示x2
(Ⅲ)当点A沿抛物线无限趋近于原点O时,求点P的极限坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线L:与椭圆E: 相交于A,B两点,该椭圆上存在点P,使得
△ PAB的面积等于3,则这样的点P共有(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.

(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·黄冈模拟)如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是(  )
A.B.C.D.3

查看答案和解析>>

同步练习册答案