精英家教网 > 高中数学 > 题目详情
如图,设点A(x0,y0)为抛物线y2=
x
2
上位于第一象限内的一动点,点B(0,y1)在y轴正半轴上,且|OA|=|OB|,直线AB交x轴于点P(x2,0).
(Ⅰ)试用x0表示y1
(Ⅱ)试用x0表示x2
(Ⅲ)当点A沿抛物线无限趋近于原点O时,求点P的极限坐标.
(Ⅰ)|OA|=
x20
+
y20
=
x20
+
x0
2
=
1
2
4
x20
+2x0

y1=|OB|=
1
2
4
x20
+2x0

(Ⅱ)kAB=
y1-y0
-x0

=
1
2
4
x20
+2x0
-
x0
2
-x0

=
2x0
-
4x02+2x0
2x0

直线AB的方程为
y=
2x0
-
4x02+2x0
2x0
x+
1
2
4x02+2x0

令y=0,得
x2=
2x0+1+
2x0+1
2

(Ⅲ)
lim
x→0+
x2=
lim
x→0+
2x0+1+
2x0+1
2
=1

故当点A沿抛物线无限趋近于原点O时,求点P的极限坐标是(1,0).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是(  )
A.x2=
8
3
3
y
B.x2=
16
3
3
y
C.x2=8yD.x2=16y

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P在抛物线x2=4y上,且点P到x轴的距离与点P到此抛物线的焦点的距离之比为1:3,则点P到x轴的距离是(  )
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点O,焦点在x轴上的抛物线过点(3,
6
)

(1)求抛物线的标准方程;
(2)若抛物线与直线y=x-2交于A、B两点,求证:kOA•kOB=-4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l:y=x+b与抛物线C:x2=4y相切于点A.
(Ⅰ)求实数b的值,及点A的坐标;
(Ⅱ)求过点B(0,-1)的抛物线C的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则△F1PF2的面积不大于a2
其中,所有正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的三个顶点在抛物线上,为抛物线的焦点,点的中点,
(1)若,求点的坐标;
(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点与抛物线有且只有一个交点的直线有(  )
A.4条    B.3条   C.2条  D.1条

查看答案和解析>>

同步练习册答案