精英家教网 > 高中数学 > 题目详情
已知分别是椭圆的左、右焦点.
(1)若是第一象限内该椭圆上的一点,,求点的坐标;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其
为坐标原点),求直线的斜率的取值范围.
(1)点的坐标为;(2)直线的斜率的取值范围是.

试题分析:(1)设,由椭圆方程可表示出,又,即可求点的坐标;
(2)显然不满足题意,所直线的斜率存在,可设的方程为,与椭圆方程联立后用韦达定理表示出;又为锐角,,进而可解出的取值范围.
试题解析:(1)因为椭圆方程为,知
,则
,联立,解得         6分
(2)显然不满足题意,所直线的斜率存在,可设的方程为
,联立
,                          8分
且△                       10分
为锐角,

             12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:+y2=1(a>1)的上顶点为A,离心率为,若不过点A的动直线l与椭圆C相交于P,Q两点,且·=0.

(1)求椭圆C的方程.
(2)求证:直线l过定点,并求出该定点N的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率相等. 直线与曲线交于两点(的左侧),与曲线交于两点(的左侧),为坐标原点,
(1)当=时,求椭圆的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得··?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆过点,离心率为.
(1)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截得线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C的焦点在轴上,焦距为2,直线n:x-y-1=0与椭圆C交于A、B两点,F1是左焦点,且,则椭圆C的标准方程是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点P到y轴的距离为6,则点P到焦点的距离为(    )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案