精英家教网 > 高中数学 > 题目详情
8.$f(x)=a{e^x}lnx+\frac{{b{e^{x-1}}}}{x}$,曲线y=f(x)在点(1,f(1)处切线为y=e(x-1)+2,则a+b=3.

分析 求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可.

解答 解:函数f(x)的定义域为(0,+∞),
f′(x)=aexlnx+$\frac{a}{x}$•ex-$\frac{b}{{x}^{2}}$•ex-1+$\frac{b}{x}$•ex-1
由题意可得f(1)=2,f′(1)=e,
故a=1,b=2;
故a+b=3,
故答案为:3.

点评 本题考查了导数的应用以及切线方程问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知cos2α=sinα,则$\frac{1}{sinα}+{cos^4}α$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,在棱长为 6的正方体ABCD-A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,过A,E,F三点作该正方体的截面,则截面的周长为(  )
A.$18+3\sqrt{2}$B.$6\sqrt{13}+3\sqrt{2}$C.$6\sqrt{5}+9\sqrt{2}$D.$10+3\sqrt{2}+4\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在钝角△ABC中,a、b、c分别为角A、B、C的对边,已知面积S=$\frac{1}{2},AB=1,BC=\sqrt{2}$,则AC=(  )
A.5B.$\sqrt{5}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一条直线和该直线外不共线的三点最多可以确定平面的个数为(  )
A.1个B.3个C.4个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=loga(x-2)+3(a>0,a≠1)的图象恒过一定点(3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=Asin(ωx+φ)+B,其中A、B、ω、φ均为实数,且A>0,ω>0,|φ|<$\frac{π}{2}$,写出满足f(1)=2,$f(2)=\frac{1}{2}$,f(3)=-1,f(4)=2的一个函数f(x)=$\sqrt{3}$sin($\frac{2π}{3}$x-$\frac{π}{3}$)+$\frac{1}{2}$(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax+lnx,其中a∈R.
(Ⅰ)若f(x)在区间[1,2]上为增函数,求a的取值范围;
(Ⅱ)当a=-e时,证明:f(x)+2≤0;
(Ⅲ)当a=-e时,试判断方程|f(x)|=$\frac{lnx}{x}$+$\frac{3}{2}$是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x>0,y>0且2x+3y=8,则$\frac{2}{x}+\frac{3}{y}$的最小值为(  )
A.$\frac{25}{8}$B.$\frac{25}{4}$C.25D.$\frac{4}{25}$

查看答案和解析>>

同步练习册答案