精英家教网 > 高中数学 > 题目详情
(2012•资阳一模)设函数f(x)=
x2-(4a+1)x-8a+4,x<1
logax,x≥1

(1)若函数f(x)是R上的减函数,求实数a的取值范围.
(2)当a=2时,令函数g(x)=2f(2x+3)-f(2x+1),对任意x∈R,不等式g(x)≥mt+m对任意的t∈[-2,2]恒成立,求实数m的取值范围.
分析:(1)利用二次函数、对数函数的单调性,及函数单调性的定义,可建立不等式组,由此可求实数a的取值范围;
(2)通过研究函数g(x)=2f(2x+3)-f(2x+1)的最小值,将问题转化为mt+m-3≤0在t∈[-2,2]上恒成立,再构建函数,即可求出实数m的取值范围.
解答:解:(1)若函数f(x)是(-∞,+∞)上的减函数,则:
4a+1
2
≥1
0<a<1
12-(4a+1)×1-8a+4≥loga1
(5分)
解得
1
4
≤a≤
1
3
,故实数a的取值范围是[
1
4
1
3
]
.(6分)
(2)g(x)=2f(2x+3)-f(2x+1)=2log2(2x+3)-log2(2x+1)=log2
(2x+3)2
2x+1
(8分)
=log2
(2x+1)2+4(2x+1)+4
2x+1
=log2[(2x+1)+
4
2x+1
+4]

(2x+1)+
4
2x+1
+4≥2
(2x+1)•
4
2x+1
+4=8
,当且仅当2x+1=
4
2x+1
,即2x+1=2,x=0时“=”成立,
∴函数g(x)≥log28=3,函数g(x)的最小值为3.(10分)
不等式g(x)≥mt+m对x∈R,t∈[-2,2]恒成立,即mt+m-3≤0在t∈[-2,2]上恒成立,令h(t)=mt+m-3,
h(-2)=-2m+m-3≤0
h(2)=2m+m-3≤0
解得-3≤m≤1,
故实数m的取值范围是[-3,1].(12分)
点评:本题考查函数单调性的定义,考查利用基本不等式求函数的最值,考查恒成立问题,正确理解单调性的定义,合理转化是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•资阳一模)设函数f(x)=
21-x,x≤0
f(x-1),x>0
若关于x的方程f(x)=x+a有且只有两个实根,则实数a的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知向量
a
b
为单位向量,且它们的夹角为60°,则|
a
-3
b
|
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)若a>b,则下列命题成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=a-
2
2x+1
是奇函数,其反函数为f-1(x),则f-1(
3
5
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=2lnx-x2+ax,a∈R.
(1)当a=2时,求函数f(x)的图象在x=1处的切线的方程;
(2)若函数f(x)-ax+m=0在[
1e
,e]
上有两个不等的实数根,求实数m的取值范围;
(3)若函数f(x)的图象与x轴交于不同的点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(px1+qx2)<0(其中实数p,q满足0<p≤q,p+q=1)

查看答案和解析>>

同步练习册答案