精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

①当时,甲走在最前面;

②当时,乙走在最前面;

③当时,丁走在最前面,当时,丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

【答案】③④⑤

【解析】路程关于时间的函数关系

它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型.

时,,∴命题①不正确;

时,,∴命题②不正确;

对数型函数的变化是先快后慢,当,甲、乙、丙、丁四个物体重合,从而可知当时,丁走在最前面,当时,丁走在最后面,命题③正确;

指数函数变化是先慢后快,当运动的时间足够长,最前面的物体一定是按照指数型函数运动的物体,即一定是甲物体,∴命题⑤正确.

结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题④正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a<﹣1,函数f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知存在实数m,n(m<n≤1),对任意t0∈(m,n),总存在两个不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,底面是边长为a的正方形,侧棱PDaPAPCa

(1)求证:PD⊥平面ABCD

(2)求证:平面PAC⊥平面PBD

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2asinθ,直线l的参数方程是 (t为参数).
(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;
(2)若直线l被圆C截得的弦长为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数y=sin2x的最小正周期为 ;命题q:函数y=cosx的图象关于直线x= 对称.则下列判断正确的是(
A.p为真
B.¬q为假
C.p∧q为假
D.p∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

1)试求的值;

2)用定义证明函数上单调递增;

(3)设关于的方程的两根为,试问是否存在实数,使得不等式对任意的恒成立?若存在,求出的取值范围;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e﹣2<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

由表中的数据得线性回归方程为 = x+ ,其中 =6.5,由此预测当广告费为7百万元时,销售额为万元.

查看答案和解析>>

同步练习册答案