【题目】已知,二次函数,关于的不等式的解集为,其中为非零常数,设.
(1)求的值;
(2)若存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标满足,求实数的取值范围;
(3)当实数取何值时,函数存在极值?并求出相应的极值点.
【答案】(1);
(2);
(3)若时,,函数极小值点为;若时,当时,函数极小值点为,极大值点为(其中,)
【解析】
试题分析:(1)首先用向量的数量积公式代入到的表达式中,然后根据所给出的不等式解集即可求得的值;(2)若存在这样的直线,则说明函数的导数可为0,从而对函数求导后解得切点横坐标与的关系,根据不等式得到的范围,进而求得实数的范围;(3)当函数存在极值时,其导数必为零点,因此先对函数求导,由于解析式中含实数,由此对导数进行分类讨论,从而可求得极极值以及极值点.
试题解析:(1)∵,
∴二次函数,
关于的不等式的解集为,
也就是不等式的解集为,
∴和 是方程的两个根,
由韦达定理得:,
∴
(2)由(1)得,
∴,
∵存在一条与轴垂直的直线和的图象相切,且切点的横坐标为,
∴.
∵,∴.
令,则,
当时,,
∴在上为增函数,
从而,∴
(3)的定义域为,
∴
方程 (*)的判别式
.
①若时,,方程(*)的两个实根为,或,
则时,;时,,
∴函数在上单调递减,在上单调递增,
此时函数存在极小值,极小值点为可取任意实数,
②若时,当,即时,恒成立,在上为增函数,
此时在上没有极值
下面只需考虑的情况,由,得或,
当,则,
故时,,
∴函数在上单调递增,
∴函数没有极值.
当时,,
则时,时,时,,
∴函数在上单调递增,在上单调递减,在上单调递增,此时函数存在极大值和极小值,极小值点,有极大值点.
综上所述,若时,可取任意实数,此时函数有极小值且极小值点为;若时,当时,函数有极大值和极小值,此时极小值点为,极大值点为(其中)
科目:高中数学 来源: 题型:
【题目】某市有三所高校,其学生会学习部有“干事”人数分别为,现采用分层抽样的方法从这些“干事”中抽取名进行“大学生学习部活动现状”调查.
(1)求应从这三所高校中分别抽取的“干事”人数;
(2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为.
(I)求曲线的方程;
(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 空间不同的三点确定一个平面
B. 空间两两相交的三条直线确定一个平面
C. 空间有三个角为直角的四边形一定是平面图形
D. 和同一条直线相交的三条平行直线一定在同一平面内
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足.
(1)求实数间满足的等量关系;
(2)若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程;
(3)当点的位置发生变化时,直线是否过定点,如果是,求出定点坐标,如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设, 为线段、上的动点,且,求的最小值.
(B)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设为线段上的动点(不包含端点),求的最小值,以及此时点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,点.
(1)过点的直线与圆交与两点,若,求直线的方程;
(2)从圆外一点向该圆引一条切线,切点记为,为坐标原点,且满足,求使得取得最小值时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/ )与汽车的平均速度之间的函数关系式为.
(I)若要求在该段时间内车流量超过2千辆/ ,则汽车在平均速度应在什么范围内?
(II)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com