精英家教网 > 高中数学 > 题目详情
8.在${(x+\frac{2}{x^2})^6}$的展开式中,常数项为60.(用数字作答)

分析 根据二项式展开式的通项公式,利用x项的指数等于0,即可求出常数项.

解答 解:在${(x+\frac{2}{x^2})^6}$的展开式中,通项公式为:
Tr+1=${C}_{6}^{r}$•x6-r•${(\frac{2}{{x}^{2}})}^{r}$=${C}_{6}^{r}$•2r•x6-3r
令6-3r=0,
解得r=2;
所以展开式的常数项为
${C}_{6}^{2}$•22=60.
故答案为:60.

点评 本题考查了利用二项展开式的通项公式解决二项展开式的特定项问题,解题的关键是写出二项式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.球O的半径为R,过球O的半径的中点作截面,该截面的面积为3π,若一个直四棱柱的底面是边长为1的正方形,且八个顶点都在球O的表面上,则该四棱柱的表面积为4$\sqrt{14}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)=sin2x+\sqrt{3}cos2x$
(1)求函数f(x)的最小正周期;
(2)当x∈[0,$\frac{π}{6}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$\lim_{n→∞}\frac{{{n^2}+1}}{{2{n^2}-n+2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.给定数列{an},记该数列前i项a1,a2,…,ai中的最大项为Ai,即Ai=max{a1,a2,…,ai};该数列后n-i项ai+1,ai+2,…,an中的最小项为Bi,即Bi=min{ai+1,ai+2,…,an};di=Ai-Bi(i=1,2,3,…,n-1)
(1)对于数列:3,4,7,1,求出相应的d1,d2,d3
(2)若Sn是数列{an}的前n项和,且对任意n∈N*,有$(1-λ){S_n}=-λ{a_n}+\frac{2}{3}n+\frac{1}{3}$,其中λ为实数,λ>0且$λ≠\frac{1}{3},λ≠1$.
①设${b_n}={a_n}+\frac{2}{3(λ-1)}$,证明数列{bn}是等比数列;
②若数列{an}对应的di满足di+1>di对任意的正整数i=1,2,3,…,n-2恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O为坐标原点,点A(2,1),向量$\overrightarrow{OB}$=(1,-2),则$(\overrightarrow{OA}+\overrightarrow{OB})•(\overrightarrow{OA}-\overrightarrow{OB})$=(  )
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中,真命题是(  )
A.存在x<0,使得2x>1
B.对任意x∈R,x2-x+l>0
C.“x>l”是“x>2”的充分不必要条件
D.“P或q是假命题”是“非p为真命题”的必要而不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m),若向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3,则实数m=(  )
A.3B.-3C.$\sqrt{3}$D.-3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数$\frac{2}{1-i}$-2对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案