精英家教网 > 高中数学 > 题目详情
3.设θ是第三象限角,且满足|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,试判断$\frac{θ}{2}$所在象限.

分析 由θ是第三象限角,可得$\frac{θ}{2}$为第二或第四象限角,结合|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$求得答案.

解答 解:∵θ是第三象限角,∴$π+2kπ<θ<\frac{3π}{2}+2kπ,k∈Z$,
则$\frac{π}{2}+kπ<\frac{θ}{2}<\frac{3π}{4}+kπ,k∈Z$,即$\frac{θ}{2}$为第二或第四象限角,
又|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,
∴$\frac{θ}{2}$为第四象限角.

点评 本题考查三角函数值的符号,考查了象限角的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某日用品按行业质量标准分成五个等级,等级系数依次为1,2,3,4,5.现从一批日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如表所示:
等级频数频率
1ca
24b
390.45
420.1
530.15
合计201.00
(1)求a,b,c的值;
(2)从等级为4的2件日用品和等级为5的3件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+(b-1)x+b+1,x∈[a,b]是偶函数.
(1)求a,b的值;
(2)在区间[-1,1]上,y=f(x)的图象恒在直线y=2x+m的图象上方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某产品广告费x(千元)与销售额y(万元)之间有如图对应数据:
x24568
y34657
(1)求销售额y关于广告费x的线性回归方程$\widehat{y}$=bx+a;
(2)当广告费支出1万元时,预测销售额为多少万元?
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,E,F分别为正方形的面ADD1A1、BCC1B1的中心,则四边形BFD1E在该正方形上的平行投影不可能为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点(-a-6,3),(2a,3a)的直线与过点点(2,1),(3,1)的直线垂直,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1和环公园人行道(阴影部分)组成,已知人行道的宽分别为4m和10m
(1)若休闲区A1B1C1D1的面积为4000平方米,则要使公园占地面积最小,休闲区A1B1C1D1的长和宽应如何设计?
(2)若公园的面积为4000平方米,要使休闲区A1B1C1D1的面积最大,公园的长和宽应如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ex-ax-2(a∈R)
(1)若a=2,求证:f(x)≥0.
(2)若x∈[1,2],求f(x)的最小值.
(3)设函数y=f(x)图象上任意不同的两点A(x1,y1),B(x2,y2)且x1<x2,记直线AB的斜率为k,求证:k>f′(px1+qx2)(其中正常数p,q满足p+q=1且p≥q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知某圆圆心在x轴上,半径为5,且截y轴所得线段长为8,求该圆的标准方程.
(2)已知双曲线与椭圆$\frac{x^2}{16}$+$\frac{y^2}{49}$=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为$\frac{3}{7}$,求双曲线的标准方程.

查看答案和解析>>

同步练习册答案