精英家教网 > 高中数学 > 题目详情

已知函数数学公式,g(x)=x.
(1)当b=-5时,求f(x)的定义域;
(2)若f(x)>g(x)恒成立,求b的取值范围.

解:(1)∵函数,b=-5,
∴4x-5•2x+4>0,…3分
解得x<0,或x>2.
∴f(x)的定义域为(-∞,0)∪(2,+∞).…6分
(2)∵,g(x)=x,
∴由f(x)>g(x),得4x+b•2x+4>2x
…9分

则h(x)≤-3,…12分
∴当b>-3时,f(x)>g(x)恒成立.
故b的取值范围是(-3,+∞).…14分.
分析:(1)由函数,b=-5,知4x-5•2x+4>0,由此能求出f(x)的定义域.
(2),g(x)=x,由f(x)>g(x),得4x+b•2x+4>2x,由此能求出结果.
点评:本题考查函数的定义域的求法,解题时要认真审题,注意对数函数的性质和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=g(x)与f(x)=loga(x+1)(a>1)的图象关于原点对称.
(1)写出y=g(x)的解析式;
(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;
(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=G(x)的图象过原点,其导函数为y=f(x),函数f(x)=3x2+2bx+c且满足f(1-x)=f(1+x).
(1)若f(x)≥0,对x∈[0,3]恒成立,求实数c的最小值.(2)设G(x)在x=t处取得极大值,记此极大值为g(t),求g(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)的图象与函数f(x)=(x-1)2(x≤0)的图象关于直线y=x对称,则函数g(x)的解析式为g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)是定义在R上的奇函数,当x>0时,g(x)=log2x,函数f(x)=4-x2,则函数f(x)•g(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函数y=g(x)定义域是[-2,3],求y=g(x+1)的定义域.

查看答案和解析>>

同步练习册答案