精英家教网 > 高中数学 > 题目详情
3.已知复数满足(1+$\sqrt{3}$i)z=$\sqrt{3}$i,则z=(  )
A.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iB.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$iD.$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$i

分析 由(1+$\sqrt{3}$i)z=$\sqrt{3}$i,则$z=\frac{\sqrt{3}i}{1+\sqrt{3}i}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(1+$\sqrt{3}$i)z=$\sqrt{3}$i,
则$z=\frac{\sqrt{3}i}{1+\sqrt{3}i}$=$\frac{\sqrt{3}i(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}=\frac{3+\sqrt{3}i}{4}$=$\frac{3}{4}+\frac{\sqrt{3}}{4}i$,
故选:C.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}中,a1=1,a5=9,则a3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在各项均为正数的等比数列{an}中,a1=2,且a2,a4+2,a5成等差数列,记Sn是数列{an}的前n项和,则S5=62.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面区域如图所示,z=mx+y在平面区域内取得最 大值的最优解有无数多个,则m的值为(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.${∫}_{0}^{\frac{π}{6}}$cosxdx=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(-2sin(π-x),cosx),$\overrightarrow{n}$=($\sqrt{3}$cosx,2sin($\frac{π}{2}$-x)),函数f(x)=1-$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若x∈[0,$\frac{π}{2}$],求函数f(x)的值域;
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等比数列{an}中,a1=3,a4=81,则该数列的通项an=3n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直线l1:4x+3y-1=0与l2:x+2y+1=0的交点M,
(1)求交点M的坐标
(2)求过点M且与直线x-2y-1=0垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U=R,集合A={x|y=$\sqrt{1-x}$},集合B={x|0<x<2},则(∁UA)∪B等于(0,+∞).

查看答案和解析>>

同步练习册答案