| A. | 1条 | B. | 2条 | C. | 3条 | D. | 4条 |
分析 在空间取一点P,经过点P分别作a∥a',b∥b',设直线a'、b'确定平面α.由异面直线所成角的定义,得a'、b'所成锐角等于80°,经过P的直线PM的射影P在a'、b'所成锐角的平分线上时,存在两条直线与a',b'所成的角都是50°,当PM的射影PQ在a'、b'所成钝角的平分线上时,存在1条直线与a',b'所成的角都是50°,由此可得本题答案.
解答 解:在空间取一点P,经过点P分别作a∥a',b∥b',![]()
设直线a'、b'确定平面α,
当直线PM满足它的射影PQ在a'、b'所成角的平分线上时,
PM与a'所成的角等于PM与b'所成的角
因为直线a,b所成的角为80°,得a'、b'所成锐角等于80°
所以当PM的射影PQ在a'、b'所成锐角的平分线上时,
PM与a'、b'所成角的范围是[40°,90°).
这种情况下,过点P有两条直线与a',b'所成的角都是50°
当PM的射影PQ在a'、b'所成钝角的平分线上时,PM与a'、b'所成角的范围是[50°,90°).
这种情况下,过点P有且只有一条直线(即PM?α时)与a',b'所成的角都是50°
综上所述,过空间任意一点P可作与a,b所成的角都是50°的直线有3条
故选:C.
点评 本题给出两条直线所成角为80°,求过空间一点P可作与a,b所成的角都是50°的直线的条数.着重考查了空间两条异面直线所成角及其求法等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{5π}{6}$,$\frac{π}{6}$] | B. | [-$\frac{π}{6}$,$\frac{5π}{6}$] | C. | [-$\frac{π}{2}$,$\frac{π}{2}$] | D. | [-$\frac{π}{3}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com