精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱中,已知
(1)求证:
(2)设上一点,试确定的位置,使平面,并证明.
⑴连DC1,  正方形DD1C1C中,D1C⊥C1D
∵AD⊥平面DD1C1C             ∴AD⊥CD1又AD∩CD1=D
∴CD1⊥平面DA C1                       
⑵ E 为AC中点时,平面                       9’
梯形ABCD中,DE∥且=" AB          " ∴AD∥且=BE
∵AD∥且= A1D1       ∴A1D1∥且="BE         " ∴A1D1EB是平行四边形
∴D1 E∥B A1   又B A1平面DB A1    D1 E平面DB A1
平面 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在直三棱柱中,.
(Ⅰ)求证:;(Ⅱ)求二面角的余弦值大小;
(Ⅲ)在上是否存在点,使得∥平面, 若存在,试给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,侧面⊥底面,底面为直角梯形,其中
,O为中点。
(Ⅰ)求证:平面 ;
(Ⅱ)求锐二面角A—C1D1—C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,在三棱柱ABC—A1B1C1中,侧面BB1C1C,已知AB=BC=1,BB1=2,,E为CC1的中点。

(1)求证:平面ABC;
(2)求二面角A—B1E—B的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图所示,在三棱锥A-BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.

(1)求证:四边形EFGH是平行四边形;
(2)若AC=BD,求证:四边形EFGH是菱形;
(3)当AC与BD满足什么条件时,四边形EFGH是正方形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四棱锥中,四边形是正方形,平面,且分别是的中点.

⑴求证:平面平面
⑵求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

垂直于同一个平面的两条直线一定         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的两条直线,是不重合的两个平面,
则下列命题中为真命题的是
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P—ABC中,已知PC^BC,PC^AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是(    )
A.平面EFG∥平面PBC       
B.平面EFG^平面ABC
是直线EF与直线PC所成的角
是平面PAB与平面ABC所成二面角的平面角

查看答案和解析>>

同步练习册答案