精英家教网 > 高中数学 > 题目详情
已知同一平面上的向量满足如下条件:
; 
; 

的最大值与最小值之差是   
【答案】分析:根据②③判断出四边形ABCQ是正方形,并建立坐标系,找出A,B,C及Q的坐标,设出P的坐标,利用向量的坐标运算求出的坐标,由①和向量的模列出关系式,化简后可得到点P的轨迹方程,其轨迹方程为一个圆,找出圆心坐标和半径,根据平面几何知识即可得到|PQ|的最大值及最小值.
解答:解:根据②③画出图形如下:并以AB 为x轴,以AQ为y轴建立坐标系,

,∴,则四边形ABCQ是矩形,
,∴AC⊥BQ,则四边形ABCQ是正方形,
则A(0,0),B(2,0),Q(0,2),C(2,2),设P(x,y),
=(-x,-y)+(2-x,-y)=(2-2x,-2y),
,∴(2-2x)2+4y2=4,化简得(x-1)2+y2=1,
则点P得轨迹是以(1,0)为圆心,以1为半径的圆,
∴|PQ|是点Q(0,2)到圆(x-1)2+y2=1任一点的距离,
则|PQ|最大值是+1,最小值是-1,
的最大值与最小值之差是2,
故答案为2.
点评:本题题考查了向量的线性运算的几何意义,数量积的性质,以及圆的标准方程和两点间的距离公式,解本题的关键是根据题意正确画出图形,并判断出特征,再建立合适的平面直角坐标系,找出动点P的轨迹方程,难度较大,体现了向量问题、几何问题和代数问题的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知同一平面上的向量
PA
PB
AQ
BQ
满足如下条件:
|
PA
+
PB
|=|
AB
|=2
; 
(
AB
|
AB
|
+
AQ
|
AQ
|
)•
BQ
=0
; 
|
AB
+
AQ
|=|
AB
-
AQ
|

|
PQ
|
的最大值与最小值之差是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知同一平面上的向量两两所成的角相等,并且,求向量的长度。

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高一下期中数学试卷(解析版) 题型:选择题

已知同一平面上的向量满足如下条件:

;③,则的最大值与最小值之差是(  )

A.1                 B.2               C.4                 D.8

 

查看答案和解析>>

科目:高中数学 来源:浙江省期中题 题型:单选题

已知同一平面上的向量满足如下条件:


的最大值与最小值之差是            
[     ]
A.1
B.2  
C.4        
D.8

查看答案和解析>>

同步练习册答案