【题目】一个抛物线型的拱桥,当水面离拱顶2 m时,水宽4 m,若水面下降1 m,求水的宽度.
【答案】![]()
【解析】试题分析:先根据抛物线顶点为坐标原点建立直角坐标系,根据条件得抛物线上一点坐标代入可得抛物线方程,再令对应y值可得横坐标,根据水的宽度与横坐标关系可得结果.
试题解析:解:如图建立直角坐标系.
设抛物线的方程为x2=-2py,
∵水面离拱顶2 m时,
水面宽4 m,
∴点(2,-2)在抛物线上,
∴4=4p,∴p=1.∴x2=-2y,
∵水面下降1 m,即y=-3,而y=-3时,x=±
,
∴水面宽为2
m.
即若水面下降1 m,水面的宽度为2
m.
点睛;抛物线的几何特性在实际中应用广泛,解决此类问题的关键是根据题意(一般是根据题中所给图形)建立适当的直角坐标系,设出抛物线的标准方程,依据题意得到抛物线上一点的坐标,从而求出抛物线方程,进而解决实际问题.
科目:高中数学 来源: 题型:
【题目】用数字
组成没有重复数字的四位数.
(Ⅰ)可组成多少个不同的四位数?
(Ⅱ)可组成多少个不同的四位偶数?
(Ⅲ)将(Ⅰ)中的四位数按从小到大的顺序排成一数列,问第
项是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=2,前3项和为S3=
.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
,
两点的坐标分别为
,
,动点
满足:直线
与直线
的斜率之积为
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)过点
作两条互相垂直的直线
,
分别交曲线
于
,
两点,设
的斜率为
(
),
的面积为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
![]()
(Ⅰ)求图中
的值;
(Ⅱ)根据已知条件完成下面
列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为
,求
的分布列与数学期望
.
(参考公式:
,其中
)
| 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到点
和直线l:
的距离相等.
(Ⅰ)求动点
的轨迹E的方程;
(Ⅱ)已知不与
垂直的直线
与曲线E有唯一公共点A,且与直线
的交点为
,以AP为直径作圆
.判断点
和圆
的位置关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com