精英家教网 > 高中数学 > 题目详情

【题目】一个抛物线型的拱桥,当水面离拱顶2 m时,水宽4 m,若水面下降1 m,求水的宽度.

【答案】

【解析】试题分析:先根据抛物线顶点为坐标原点建立直角坐标系,根据条件得抛物线上一点坐标代入可得抛物线方程,再令对应y值可得横坐标,根据水的宽度与横坐标关系可得结果.

试题解析:解:如图建立直角坐标系.

设抛物线的方程为x2=-2py

∵水面离拱顶2 m时,

水面宽4 m,

∴点(2,-2)在抛物线上,

∴4=4p,∴p=1.∴x2=-2y

∵水面下降1 m,即y=-3,而y=-3时,x=±

∴水面宽为2 m.

即若水面下降1 m,水面的宽度为2 m.

点睛;抛物线的几何特性在实际中应用广泛,解决此类问题的关键是根据题意(一般是根据题中所给图形)建立适当的直角坐标系,设出抛物线的标准方程,依据题意得到抛物线上一点的坐标,从而求出抛物线方程,进而解决实际问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用数字组成没有重复数字的四位数

可组成多少个不同的四位数?

可组成多少个不同的四位偶数?

中的四位数按从小到大的顺序排成一数列,问第项是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 两点的坐标分别为 ,动点满足:直线与直线的斜率之积为

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)过点作两条互相垂直的直线 分别交曲线 两点,设的斜率为),的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 分别是的中点, 平面 ,二面角.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:函数在区间上是减函数;

(2)当时,证明:函数只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,求曲线处的切线方程;

(2)若当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

晋级成功

晋级失败

合计

16

50

合计

(Ⅰ)求图中的值;

(Ⅱ)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望

(参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点和直线l 的距离相等.

(Ⅰ)求动点的轨迹E的方程;

(Ⅱ)已知不与垂直的直线与曲线E有唯一公共点A,且与直线的交点为,以AP为直径作圆.判断点和圆的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案