精英家教网 > 高中数学 > 题目详情
已知f(x)=loga(4x+
a
x
)
在区间[1,2]上为增函数,则a的取值范围是______.
f(x)=loga(4x+
a
x
)
可看作由y=logat与t=4x+
a
x
复合而成的,x∈[1,2]时,4x+
a
x
>0.
①当a>1时,y=logat单调递增,因为f(x)单调递增,则须有t=4x+
a
x
,x∈[1,2],单调递增,
所以t′=4-
a
x2
≥0即a≤4x2在x∈[1,2]上恒成立,所以a≤4×12=4,则1<a≤4;
②当时,y=logat单调递减,因为f(x)单调递增,则须有t=4x+
a
x
,x∈[1,2],单调递减,
所以t′=4-
a
x2
≤0即a≥4x2在x∈[1,2]上恒成立,所以a≥4×22=16,与0<a<1矛盾.
综上,a的取值范围是(1,4].
故答案为:(1,4].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定义域;

(2)判断f(x)的奇偶性并予以证明.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定义域

求使 f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案