精英家教网 > 高中数学 > 题目详情
(2013•资阳二模)已知直线l,m和平面α,则下列命题正确的是(  )
分析:根据线面平行的判定定理三个条件一个都不能少,可判断A的真假;
根据线面平行的几何特征,及空间直线关系的分类和定义,可判断B的真假;
根据线线垂直及线面垂直的几何特征,可以判断C的真假;
根据线面垂直的性质(定义)可以判断D的真假;
解答:解:若l∥m,m?α,当l?α,则l∥α不成立,故A错误
若l∥α,m?α,则l∥m或l,m异面,故B错误;
若l⊥m,l⊥α,则m?α或m∥α,故C错误;
若l⊥α,m?α,根据线面垂直的定义,线面垂直则线垂直面内任一线,可得l⊥m,故D正确
故选D
点评:本题考查的知识点是空间中直线与直线的位置关系,空间中直线与平面的位置关系,其中熟练掌握空间线面关系的几何特征是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•资阳二模)某部门对当地城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,根据每份调查表得到每个调查对象的幸福指数评分值(百分制).现从收到的调查表中随机抽取20份进行统计,得到右图所示的频率分布表:
幸福指数评分值 频数 频率
[50,60] 1
(60,70] 6
(70,80]
(80,90] 3
(90,100] 2
(Ⅰ)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
(Ⅱ)该部门将邀请被问卷调查的部分居民参加“幸福愿景”的座谈会.在题中抽样统计的这20人中,已知幸福指数评分值在区间(80,100]的5人中有2人被邀请参加座谈,求其中幸福指数评分值在区间(80,90]的仅有1人被邀请的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=
14
AB

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过(1,1)与(
6
2
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:
1
|OA|2
+
1
|OB|2
+
2
|OM|2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知全集U={1,2,3,4,5},A={1,2,3},B={3,5},则(?UA)∪B=(  )

查看答案和解析>>

同步练习册答案