【题目】已知抛物线
:
,过其焦点
作斜率为1的直线交抛物线
于
,
两点,且线段
的中点的纵坐标为4.
(1)求抛物线
的标准方程;
(2)若不过原点
且斜率存在的直线
与抛物线
相交于
、
两点,且
.求证:直线
过定点,并求出该定点的坐标.
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数
时的图象,且图象的最高点为B
赛道的中间部分为长
千米的直线跑道CD,且CD∥EF;赛道的后一部分是以
为圆心的一段圆弧DE.
![]()
(1)求
的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧DE上,求“矩形草坪”面积的最大值,并求此时P点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
![]()
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M-BO-C的大小为30°,如存在,求
的值,如不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在
上的函数
满足:对任意的
,当
时,都有
.
(1)若
,求实数
的取值范围;
(2)若
为周期函数,证明:
是常值函数;
(3)若
在
上满足:
,
,
,
①记
(
),求数列
的通项公式;② 求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是
月
日,张老师把
告诉了甲,把
告诉了乙,然后张老师列出来如下10个日期供选择: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
和直线
:
,椭圆的离心率
,坐标原点到直线
的距离为
.
![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点
,若直线
过点
且与椭圆相交于
两点,试判断是否存在直线
,使以
为直径的圆过点
?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是
(t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)当m=2时,直线l与曲线C交于A、B两点,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方
向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这
样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com