精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左焦点为离心率为为圆的圆心.

(1)求椭圆的方程;

(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.

【答案】(1);(2)

【解析】试题分析:(Ⅰ)由题意求得a,b的值即可确定椭圆方程;

(Ⅱ)分类讨论,设直线l代入椭圆方程,运用韦达定理和弦长公式,可得|AB|,根据点到直线的距离公式可求出|CD|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围

试题解析:

1)由题意知,则

的标准方程为,从而椭圆的左焦点为,即

所以,又,得

所以椭圆的方程为:.

(2)可知椭圆右焦点

(ⅰ)当lx轴垂直时,此时不存在,直线l:,直线

可得:,四边形面积为12.

(ⅱ)当lx轴平行时,此时直线,直线

可得:,四边形面积为.

(iii)当lx轴不垂直时,设l的方程为 ,并设.

.

显然,且.

所以.

且与l垂直的直线,则圆心到的距离为

所以.

故四边形面积:.

可得当lx轴不垂直时,四边形面积的取值范围为(12,).

综上,四边形面积的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,过点轴的垂线交椭圆于两点,.

(1)求椭圆的标准方程;

(2)为椭圆短轴的上顶点,直线不经过点且与相交于两点,若直线与直线的斜率的和为,问:直线是否过定点?若是,求出这个定点,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下统计资料:

/

2

3

4

5

6

/万元

若由资料知 呈线性相关关系,试求:

1)回归直线方程;

2)估计使用年限为10年时,维修费用约是多少?

参考公式:回归直线方程: .其中

(注: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是抛物线y2=﹣8x上一点,设P到此抛物线准线的距离是d1,到直线x+y﹣10=0的距离是d2,则dl+d2的最小值是__.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过函数性质的学习,我们知道:函数的图象关于轴成轴对称图形的充要条件是为偶函数”.

1)若为偶函数,且当时,,求的解析式,并求不等式的解集;

2)某数学学习小组针对上述结论进行探究,得到一个真命题:函数的图象关于直线成轴对称图形的充要条件是为偶函数”.若函数的图象关于直线对称,且当时,.

i)求的解析式;

ii)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右图是一个几何体的平面展开图,其中ABCD

正方形, EF分别为PAPD的中点,在此几何体中,

给出下面四个结论:

直线BE与直线CF异面;直线BE与直线AF异面;

直线EF//平面PBC平面BCE平面PAD.

其中正确结论的个数是

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一直角坐标系中,函数fx)=x≥0),gx)=的图象可能是(

A. B.

C. D.

查看答案和解析>>

同步练习册答案