精英家教网 > 高中数学 > 题目详情
9.已知A,B,C是△ABC的三个内角,给出下列三组数据①sinA,sinB,sinC; ②sin2A,sin2B,sin2C;③cos2$\frac{A}{2}$,cos2$\frac{B}{2}$,cos2$\frac{C}{2}$;分别以每组数据作为三条线段的长,其中一定能构成三角形的数组的序号是(  )
A.①②B.①③C.②③D.①②③

分析 根据正弦定理可判断出①正确,根究正弦定理、举特例判断出②不正确,根据二倍角余弦公式的变形进行化简,并利用作差法、和差化积公式化简后,由三角形内角的方范围判断出三边关系,可判断出③正确.

解答 解:①由正弦定理得sinA:sinB:sinC=a:b:c,
所以sinA,sinB,sinC作为三条线段的长一定能构成三角形,①正确;
②由正弦定理得sin2A:sin2B:sin2C=a2:b2:c2
例如:a=3、b=4、c=5,则a2=9、b2=16、c2=25,
则a2+b2=25=c2,sin2A,sin2B,sin2C作为三条线段的长不能构成三角形,②不正确;
③因为cos2$\frac{A}{2}$=$\frac{1+cosA}{2}$,cos2$\frac{B}{2}$=$\frac{1+cosB}{2}$,cos2$\frac{C}{2}$=$\frac{1+cosC}{2}$,
所以(cos2$\frac{A}{2}$+cos2$\frac{B}{2}$)-cos2$\frac{C}{2}$=$\frac{1}{2}$(1+cosA+cosB-cosC)
因为cosA+cosB=2cos$\frac{A+B}{2}$cos$\frac{A-B}{2}$>0,1-cosC>0,
所以1+cosA+cosB-cosC>0,
即cos2$\frac{A}{2}$,cos2$\frac{B}{2}$,cos2$\frac{C}{2}$作为三条线段的长能构成三角形,③正确,
故选:B.

点评 本题考查正弦定理,二倍角余弦公式的变形的应用,以及能构成三角的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知命题p;对?x∈R,?m0∈R.使4x+2xm0+1=0.若命题¬p是假命题.则实数m0的取值范围是(  )
A..[-2,2]B..[2,+∞)C.(-∞,-2]D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:cos$\frac{α}{2}$•$\sqrt{\frac{1-sin\frac{α}{2}}{1+sin\frac{α}{2}}}$+cos$\frac{α}{2}$•$\sqrt{\frac{1+sin\frac{α}{2}}{1-sin\frac{α}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a=$\int_0^{\frac{π}{6}}{cosxdx}$,则${(x+\frac{a}{x})^8}$的展开式中的常数项是$\frac{35}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cosx+sinx=$\frac{{3\sqrt{2}}}{5}$,那么sin2x=(  )
A.$\frac{18}{25}$B.$-\frac{7}{25}$C.$±\frac{24}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x∈R,则“x=±1”是“复数z=(x2-1)+(x+2)i为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=2x-x2(x∈[0,3])的值域是[-3,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知 A(-1,1),B(2,-1).若直线AB上的点D满足$\overrightarrow{AD}=-2\overrightarrow{BD}$,则D点得坐标为$(1,-\frac{1}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,则f(f(1))的值是(  )
A.-2B.2C.-4D.5

查看答案和解析>>

同步练习册答案