精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点,
(Ⅰ) 求证:AC⊥SD;
(Ⅱ) 若SD⊥平面PAC,求二面角P-AC-D的大小;
(Ⅲ) 在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.
解:(Ⅰ)连结BD,设AC交BD于O,由题意SO⊥AC,
在正方形ABCD中,AC⊥BD,
所以AC⊥平面SBD,得AC⊥SD。 
(Ⅱ)设正方形边长a,则
,所以∠SOD=60°,
连结OP,由(Ⅰ)知AC⊥平面SBD,
所以AC⊥OP,且AC⊥OD,
所以∠POD是二面角P-AC-D的平面角,
由SD⊥平面PAC,知SD⊥OP,
所以∠POD=30°,即二面角P-AC-D的大小为30°。
(Ⅲ)在棱SC上存在一点E,使BE∥平面PAC,由(Ⅱ)可得
故可在SP上取一点N,使PN=PD,
过N作PC的平行线与SC的交点即为E,连结BN,
在△BDN中知BN∥PO,又由于NE∥PC,
故平面BEN∥平面PAC,得BE∥平面PAC,
由于SN:NP=2:1,故SE:EC=2:1。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案