精英家教网 > 高中数学 > 题目详情

【题目】随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如图所示.

1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收人薪资高于8000元的城市的概率;

2)若从月平均收入薪资与月平均期望薪资之差高于1000元的城市中随机选择2座城市,求这2座城市的月平均期望薪资都高于8000元或都低于8000元的概率.

【答案】12

【解析】

1)记事件为该生选中月平均收入薪资高于8000元的城市,利用古典概型可得概率

2)记2座城市的月平均期望薪资都高于8000元或都低于8000元为事件,利用古典概型可得概率.

1)设该生选中月平均收入薪资高于8000元的城市为事件

15座城市中月平均收入薪资高于8000元的有7个,

所以.

2)月平均收入薪资和月平均期望薪资之差高于1000元的城市有6个,

其中月平均期望薪资高于8000元的有3个,记为

月平均期望薪资低于8000元的有3个,记为

选取两座城市所有的可能为:,共15种,

2座城市的月平均期望薪资都高于8000元或都低于8000元为事件

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)当存在三个不同的零点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数fx)的最小值为8,求实数a的值;

(Ⅱ)若函数gx)=|fx|+fx)﹣164个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)设曲线交于两点,点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C=1ab0)的左焦点分别为F1-c0),F2c0),过F2作垂直于x轴的直线l交椭圆CAB两点,满足|AF2|=c

1)椭圆C的离心率;

2MN是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MPNP分别和x轴相交于RQ两点,O为坐标原点,若|OR||OQ|=4,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如图所示.

1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收人薪资高于8000元的城市的概率;

2)若从月平均收入薪资与月平均期望薪资之差高于1000元的城市中随机选择2座城市,求这2座城市的月平均期望薪资都高于8000元或都低于8000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图一)的平面展开图(如图二)中,四边形为边长等于的正方形均为正三角形,在三棱锥中:

(I)证明:平面平面

Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.

图一

图二

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

1)求椭圆C的方程;

2)设过点的直线l与椭圆C交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点为,点在椭圆上,且点关于原点对称,直线的斜率的乘积为.

(1)求椭圆的方程;

(2)已知直线经过点,且与椭圆交于不同的两点,若,判断直线的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案