【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1);(2)
【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k==8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k==1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
【题型】解答题
【结束】
17
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
【答案】(1);(2)
【解析】试题分析:(1)由直线的斜率为,可得所求直线的斜率为,代入点斜式方程,可得答案;(2)直线与两坐标轴的交点分别为,则所围成的三角形的面积为,根据直线与两坐标轴所围成的三角形的面积为大于,构造不等式,解得答案.
试题解析:(1)与直线l垂直的直线的斜率为-2,
因为点(2,3)在该直线上,所以所求直线方程为y-3=-2(x-2),
故所求的直线方程为2x+y-7=0.
(2) 直线l与两坐标轴的交点分别为(-2m+2,0),(0,m-1),
则所围成的三角形的面积为×|-2m+2|×|m-1|.
由题意可知×|-2m+2|×|m-1|>4,化简得(m-1)2>4,
解得m>3或m<-1,
所以实数m的取值范围是(-∞,-1)∪(3,+∞).
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{ }的前n项和为Sn , 则S1S2S3…S10= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是( )
A.(﹣∞,0)
B.
C.
D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的首项a1=1,且(n+1)a +anan+1﹣na =0对n∈N*都成立.
(1)求{an}的通项公式;、
(2)记bn=a2n﹣1a2n+1 , 数列{bn}的前n项和为Tn , 证明:Tn< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=xlnx+ax,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为 ,每次考B科合格的概率均为 .假设他不放弃每次考试机会,且每次考试互不影响.
(I)求甲恰好3次考试通过的概率;
(II)记甲参加考试的次数为ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P是长轴长为 的椭圆Q: 上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为 .
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是 ,求|CD|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 ( 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为 .
(1)写出直线 的普通方程及圆 的直角坐标方程;
(2)点 是直线 上的点,求点 的坐标,使 到圆心 的距离最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com