精英家教网 > 高中数学 > 题目详情
18.在△ABC中,边a,b,c分别是内角A,B,C所对的边,且满足2sinB=sinA+sinC,设B的最大值为B0
(1)求B0的值;
(2)当B=B0,a=1,c=3,D为AC的中点时,求BD的长.

分析 (1)由已知结合正弦定理把角的关系转化为边的关系,再由余弦定理求得B0的值;
(2)由已知结合余弦定理求得cosC的值,进而利用余弦定理即可解得BD的值.

解答 解:(1)由题设及正弦定理知,2b=a+c,即b=$\frac{a+c}{2}$.
由余弦定理知,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-(\frac{a+c}{2})^{2}}{2ac}$=$\frac{3({a}^{2}+{c}^{2})-2ac}{8ac}$≥$\frac{3(2ac)-2ac}{8ac}$=$\frac{1}{2}$,
∵y=cosx在(0,π)上单调递减,
∴B的最大值B0=$\frac{π}{3}$;
(2)∵B=B0=$\frac{π}{3}$,a=1,c=3,
∴在三角形ABC中,b2=a2+c2-2accosB=7,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{\sqrt{7}}{14}$,
∴在三角形BCD中,BD=$\sqrt{B{C}^{2}+C{D}^{2}-2•BC•CD•cosC}$=$\sqrt{{1}^{2}+(\frac{\sqrt{7}}{2})^{2}-2×1×\frac{\sqrt{7}}{2}×(-\frac{\sqrt{7}}{14})}$=$\frac{\sqrt{13}}{2}$.

点评 本题考查三角形的解法,考查了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=-x3+ax2+bx-7在R上单调递减,则实数a,b一定满足条件(  )
A.a2+3b≤0B.a2+3b<0C.a2+3b>0D.a2+3b=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程$\frac{x^2}{m-2}+\frac{y^2}{m+3}=1$表示双曲线的一个充分不必要条件是(  )
A.-3<m<0B.-3<m<2C.-3<m<4D.-1<m<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.y=$\frac{1-{e}^{x}}{1+{e}^{x}}$的导数为$\frac{-2{e}^{x}}{(1+{e}^{x})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x+1)的定义域为[-1,2],则函数y=f (x)的定义域为(  )
A.[-1,2]B.[0,2]C.[-1,3]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{2+i}{1+i}$的共轭复数在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.阅读下列程序,输出的结果为22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合U=[-5,4],A={x∈R|-3≤2x+1<1},B={x∈R|x2-2x≤0},则(∁UA)∩B=(  )
A.B.[-2,0)C.[0,2]D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出以下命题:
①若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$同向共线;
②函数f(x)=cos(sinx)的最小正周期为π;
③在△ABC中,|$\overrightarrow{AC}$|=3,|$\overrightarrow{BC}$|=4,|$\overrightarrow{AB}$|=5,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=16;
④函数f(x)=tan(2x-$\frac{π}{3}$)的一个对称中心为($\frac{5π}{12}$,0);
其中正确命题的序号为①②④.

查看答案和解析>>

同步练习册答案