精英家教网 > 高中数学 > 题目详情
14.函数f(x)=(x-$\frac{1}{x}$)sinx(-π≤x<0或0<x≤π)的图象大致为(  )
A.B.C.D.

分析 判断f(x)的奇偶性,零点个数,计算f($\frac{π}{2}$),即可得出答案.

解答 解:∵f(-x)=(-x+$\frac{1}{x}$)sin(-x)=(x-$\frac{1}{x}$)sinx=f(x),
∴f(x)是偶函数,即f(x)的图象关于y轴对称,
排除D,
令f(x)=0得x-$\frac{1}{x}$=0或sinx=0,
∵-π≤x<0或0<x≤π,
∴x=1或x=-1或x=-π或x=π.
∴f(x)有4个零点,排除A,
又f($\frac{π}{2}$)=$\frac{π}{2}$-$\frac{2}{π}$>0,排除C,
故选B.

点评 本题考查了函数图象的判断,主要从奇偶性、单调性、零点、函数值等各方面判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为π,其图象关于直线x=$\frac{π}{3}$对称,则|φ|的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:若a>|b|,则a2>b2;命题q:若x2=4,则x=2,.下列说法正确的是(  )
A.“p∨q”为假命题B.“p∧q”为假命题C.“¬p”为真命题D.“¬q”为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,g(x)=ex+ax.
(1)若a<0.
(i)试探讨函数f(x)的单调性;
(ii)若函数f(x)和g(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2-f(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的左右焦点分别为F1,F2
(1)若双曲线右支上一点A使得△AF1F2的面积为$\sqrt{26}$,求点A的坐标;
(2)已知O为坐标原点,圆D:(x-3)2+y2=r2(r>0)与双曲线C右支交于M,N两点,点P为双曲线C上异于M,N的一动点,若直线PM,PN与x轴分别交于点R,S,求证:|OR|•|OS|为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数:①f(x)=2sin(2x+$\frac{π}{3}$);②f(x)=2sin(2x-$\frac{π}{6}$);③f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$);④f(x)=2sin(2x-$\frac{π}{3}$),其中,最小正周期为π且图象关于直线x=$\frac{π}{3}$对称的函数序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x<3},B={x∈Z|x2<4},则A∩B=(  )
A.{0,1}B.{-1,0,1,2}C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=alnx-x,g(x)=aex-x,其中a为正实数.
(Ⅰ)若f(x)在(1,+∞)上是单调减函数,且g(x)在(2,+∞)上有最小值,求a的取值范围;
(Ⅱ)若函数f(x)与g(x)都没有零点,求a的取值范围.

查看答案和解析>>

同步练习册答案