精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$
(1)计算f(1)+f(0)的值;
(2)计算f(x)+f(1-x)的值;
(3)若关于x的不等式:f[23x-2-x+m(2x-2-x)+$\frac{1}{2}$]<$\frac{1}{2}$在区间[1,2]上有解,求实数m的取值范围.

分析 (1)根据函数的解析式直接计算f(1)+f(0)的值.
(2)根据函数的解析式直接计算f(x)+f(1-x)的值.
(3)推导出f(x)在[1,2)上单调递增,从而得到23x-2-x+m(2x-2-x)<0,由此能求出实数m的取值范围.

解答 解:(1)∵f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$
∴f(1)+f(0)=$\frac{2}{2+\sqrt{2}}$+$\frac{1}{1+\sqrt{2}}$
=$\frac{2(2-\sqrt{2})}{2}$+$\frac{\sqrt{2}-1}{1}$
=2-$\sqrt{2}+\sqrt{2}-1$
=1.
(2)f(x)+f(1-x)
=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}+\frac{{2}^{1-x}}{{2}^{1-x}+\sqrt{2}}$
=$\frac{2+\sqrt{2}({2}^{x}+{2}^{1-x})+2}{2+\sqrt{2}({2}^{x}+{2}^{1-x})+2}$=1.
(3)∵f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$=$\frac{1}{1+\frac{\sqrt{2}}{{2}^{x}}}$,
∴f(x)在[1,2]上单调递增,
∵f($\frac{1}{2}$)=$\frac{\sqrt{2}}{2\sqrt{2}}$=$\frac{1}{2}$,
∴f[${2}^{3x}-{2}^{-x}+m({2}^{x}-{2}^{-x})+\frac{1}{2}$]<$\frac{1}{2}$=f($\frac{1}{2}$),
∵f(x)在[1,2]上单调递增,
∴23x-2-x+m(2x-2-x)+$\frac{1}{2}$$<\frac{1}{2}$,
∴23x-2-x+m(2x-2-x)<0,
∴m<-$\frac{{2}^{3x}-{2}^{-x}}{{2}^{x}-{2}^{-x}}$=$\frac{-({2}^{4x}-1)}{{2}^{2x}-1}$=-(22x+1),
当x=1时,-(22x+1)max=-5.
∴m<-5.
∴实数m的取值范围(-∞,-5).

点评 本题主要考查函数值的计算,以及不等式恒成立问题,利用函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,F是CD的中点,EF交BD于G,交AC于H,若AD=5,BC=8,则GH=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,a1=2,a3=8.若{an}为等差数列,则其前n项和为 Sn=$\frac{3{n}^{2}+n}{2}$;若{an}为等比数列,则其公比为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在y=($\frac{1}{2}$)x,y=$\sqrt{x}$,y=x2,y=x${\;}^{\frac{2}{3}}$四个函数中,当0<x1<x2<1时,使f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立的函数个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M发生的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知m∈(0,1),令a=logm2,b=m2,c=2m,那么a,b,c之间的大小关系为a<b<c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≤0}\\{ln(x+a),x>0}\end{array}$,若方程f(x)=$\frac{1}{2}$有两个不相等的实数根,则a的取值范围是(  )
A.-$\frac{1}{2}$≤a<$\frac{1}{2}$B.$0≤a<\frac{1}{2}$C.0≤a<1D.$-\frac{1}{2}<a≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)满足:
①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)?f(n);
②对任意m∈R,都有f(1+m)=f(1-m)恒成立;
③f(x)不恒为0,且当0<x<1时,f(x)<1.
(1)求f(0),f(1)的值;
(2)判断函数f(x)的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数g(x)定义域中的任意一个x,均有g(x+T)=g(x),则称g(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出$f(\frac{1}{3})+f(\frac{2}{3})+f(\frac{3}{3})+…+f(\frac{2017}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+2ax+3,x∈[-2,2]
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)记f(x)在区间[-2,2]上的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

同步练习册答案