精英家教网 > 高中数学 > 题目详情
14.在y=($\frac{1}{2}$)x,y=$\sqrt{x}$,y=x2,y=x${\;}^{\frac{2}{3}}$四个函数中,当0<x1<x2<1时,使f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立的函数个数为(  )
A.1B.2C.3D.4

分析 由条件可知f(x)在(0,1)上为上凸函数,根据4个函数的图象判断即可.

解答 解:∵f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立,
∴f(x)在(0,1)上是上凸函数,
∴符合条件的函数为y=$\sqrt{x}$,y=x${\;}^{\frac{2}{3}}$,
故选:B.

点评 本题考查了基本初等函数的函数图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交于点A(x1,y1),α∈($\frac{π}{4}$,$\frac{π}{2}$).将角α终边绕原点按逆时针方向旋转$\frac{π}{4}$,交单位圆于点B(x2,y2).过A,B作x轴的垂线,垂足分别为C,D,记△AOC及△BOD的面积分别为S1,S2,且S1=$\frac{4}{3}$S2,则tanα的值等于(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax+1,x≥1}\\{a{x}^{2}+x+1,x<1}\end{array}\right.$在R上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如图频率分布直方图.观察图形的信息,回答下列问题:这次考试的中位数为73.3(结果保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)的导函数的图象关于y轴对称,则f(x)的解析式可能为(  )
A.f(x)=3cosxB.f(x)=x3+x2C.f(x)=1+sin2xD.f(x)=ex+x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线4x+3y=40与圆x2+y2=100的位置关系是(  )
A.相交B.相切C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$
(1)计算f(1)+f(0)的值;
(2)计算f(x)+f(1-x)的值;
(3)若关于x的不等式:f[23x-2-x+m(2x-2-x)+$\frac{1}{2}$]<$\frac{1}{2}$在区间[1,2]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R山的函数y=f(x)满足f(x+1)=f(x),当0≤x<1时,f(x)=2-x,若函数g(x)=f(x)-2ax(a>0,a≠1),恰有2个零点,则a的取值范围是(  )
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}})∪(\frac{1}{{\sqrt{2}}},\frac{1}{{\root{3}{2}}})$B.$(\frac{1}{{\sqrt{2}}},\frac{1}{{\root{3}{2}}})∪[2,+∞)$
C.$(\frac{1}{2},\frac{1}{{\sqrt{e}}})∪[2,+∞)$D.$(\frac{1}{2},\frac{1}{{\sqrt{e}}})∪(\frac{1}{{\sqrt{2}}},\frac{1}{{\root{3}{2}}})∪[2,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知{an}为等差数列,S7=28,S11=66,则a5=(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案