精英家教网 > 高中数学 > 题目详情
2.已知{an}为等差数列,S7=28,S11=66,则a5=(  )
A.3B.4C.5D.6

分析 利用等差数列的求和公式与通项公式即可得出.

解答 解:设等差数列{an}的公差为d,∵S7=28,S11=66,
∴7a1+$\frac{7×6}{2}d$=28,11a1+$\frac{11×10}{2}$d=66,
解得a1=d=1.
则a5=1+(5-1)=5.
故选:C.

点评 本题考查了等差数列的求和公式与通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在y=($\frac{1}{2}$)x,y=$\sqrt{x}$,y=x2,y=x${\;}^{\frac{2}{3}}$四个函数中,当0<x1<x2<1时,使f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立的函数个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)满足:
①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)?f(n);
②对任意m∈R,都有f(1+m)=f(1-m)恒成立;
③f(x)不恒为0,且当0<x<1时,f(x)<1.
(1)求f(0),f(1)的值;
(2)判断函数f(x)的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数g(x)定义域中的任意一个x,均有g(x+T)=g(x),则称g(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出$f(\frac{1}{3})+f(\frac{2}{3})+f(\frac{3}{3})+…+f(\frac{2017}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=2px(p>0)的焦点为F,圆M的圆心在抛物线上且经过坐标原点O和点F,若圆M的半径为3,则抛物线方程为(  )
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“α为第二象限角”是“$\frac{α}{2}$为锐角”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,统计了他们的成绩,得到如图所示的频率分布直方图.这40个考生成绩的众数77.5,中位数77.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+2ax+3,x∈[-2,2]
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)记f(x)在区间[-2,2]上的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中不正确的个数是(  )
①小于90°的角是锐角;
②终边不同的角的同名三角函数值不等;
③若sinα>0,则α是第一、二象限角;
④若α是第二象限的角,且P(x,y)是其终边上的一点,则cosα=$\frac{-x}{{\sqrt{{x^2}+{y^2}}}}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是$\frac{1}{si{n}^{2}1}$.

查看答案和解析>>

同步练习册答案