精英家教网 > 高中数学 > 题目详情

等比数列{an}的前n项和Sn,又2S3=S1+S2,则公比q=________.

-
分析:根据数列前n项和的定义与等比数列的通项公式,将2S3=S1+S2化简整理,得a1q(2q+1)=0,再由等比数列各项不为0,得2q+1=0,解之即可得到公比的值.
解答:∵2S3=S1+S2,∴2(a1+a2+a3)=a1+(a1+a2)…(*)
又∵数列{an}是公比为q的等比数列
∴a2=a1q,a3=a1q2,2(a1+a2+a3)=a1+(a1+a2),
代入(*)式,得2(a1+a1q+a1q2)=a1+(a1+a1q)
化简整理,得2a1q2+a1q=0,即a1q(2q+1)=0
∵a1≠0,∴2q+1=0,可得q=-
故答案为:-
点评:本题给出等比数列的前3项和是前1项和、前2项和的等差中项,求数列的公比q.着重考查了数列前n项和的定义与等比数列的通项公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn是等比数列{an}的前n项和,对于任意正整数n,恒有Sn>0,则等比数列{an}的公比q的取值范围为
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)统计某校高三年级100名学生的数学月考成绩,得到样本频率分布直方图如下图所示,已知前4组的频数分别是等比数列{an}的前4项,后6组的频数分别是等差数列{bn}的前6项,
(1)求数列{an}、{bn}的通项公式;
(2)设m、n为该校学生的数学月考成绩,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

同步练习册答案