精英家教网 > 高中数学 > 题目详情
6.已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{a_{n+1}}$(n≥1,n∈Z)
(1)求数列{an}的通项公式an
(2)求数列{n2an}的前n项和Tn

分析 (1)利用数列的递推关系式,求出相邻两项的关系式,推出数列{nan}从第二项起,是以2 为首项,3为公比的等比数列,然后求解通项公式.
(2)化简所求数列的通项公式,利用错位相减法求和求解即可.

解答 解:(1)∵${a_1}+2{a_2}+3{a_3}+…+n{a_n}=\frac{n+1}{2}{a_{n+1}}$(n∈N*
∴${a_1}+2{a_2}+3{a_3}+…+(n-1){a_{n-1}}=\frac{n}{2}{a_n}$(n≥2)
两式相减得$n{a_n}=\frac{n+1}{2}{a_{n+1}}-\frac{n}{2}{a_n}$
∴$\frac{{(n+1){a_{n+1}}}}{{n{a_n}}}=3$(n≥2)
∴数列{nan}从第二项起,是以2为首项,3为公比的等比数列
∴$n{a_n}=2•{3^{n-2}}$(n≥2)
故${a_n}=\left\{\begin{array}{l}1,n=1\\ \frac{2}{n}•{3^{n-2}},n≥2\end{array}\right.$
(2)由(1)可知当n≥2时,${n^2}{a_n}=2n•{3^{n-2}}$
当n≥2时,${T_n}=1+4•{3^0}+6•{3^1}+…+2n•{3^{n-2}}$,
3Tn=3+4•31+6•32+…+(2n-1)•3n-2+2n•3n-1(n≥2)
两式相减可得-2Tn=1+1•30+2•31+2•32+…+2•3n-2-2n•3n-1=2×$\frac{1(1-{3}^{n})}{1-3}$-2n•3n-1
∴${T_n}=\frac{1}{2}+(n-\frac{1}{2}){3^{n-1}}$,(n≥2)
又T1=a1=1也满足上式,
∴${T_n}=\frac{1}{2}+(n-\frac{1}{2}){3^{n-1}}$(n∈N*).

点评 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设i为虚数单位,若复数z满足z•$\frac{(1+i)^{2}}{2}$=1+2i,则复数z的虚部为(  )
A.-1B.-iC.-2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和${S_n}={(-1)^{n+1}}\frac{1}{2^n}$,如果存在正整数n,使得(p-an)(p-an+1)<0成立,则实数p的取值范围是(-$\frac{3}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点P(2,1)是抛物线上x2=4y上的一点,点M,N是抛物线上的动点(M,N,P三点不共线),直线PM,PN分别交y轴于A,B两点,且|PA|=|PB|,则直线MN的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a2=2,2an+1=an,则数列{an}的前6项和S6等于(  )
A.$\frac{63}{16}$B.$\frac{63}{12}$C.$\frac{63}{8}$D.$\frac{63}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知α∈(0,$\frac{π}{2}$),试比较α,sinα,tanα的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:
①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;
②命题“在△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;
③命题“若a>b>0,则$\root{3}{a}>\root{3}{b}>0$”的逆否命题;
④“若m≥1,则mx2-2(m+1)x+(m+3)>0的解集为R”的逆命题.
其中真命题的序号为(  )
A.①②③B.①②④C.②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列结论正确的是(  )
A.命题“如果p2+q2=2,则p+q≤2”的否命题是“如果p+q>2,则p2+q2≠2”
B.命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∨q为假
C.若($\sqrt{x}$-$\frac{1}{2\root{3}{x}}$)n的展开式中第四项为常数项,则n=5
D.“若am2<bm2,则a<b”的逆命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ x+2y-2≥0\\ x-1≤0.\end{array}\right.$则$z=\frac{y}{x}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案